Sandbox GGC10
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='3B8E' size='340' side='right' caption='Na+/K+ Pump Protein' scene=''> | <StructureSection load='3B8E' size='340' side='right' caption='Na+/K+ Pump Protein' scene=''> | ||
- | + | ||
- | + | ||
== Function == | == Function == | ||
- | The primary function of this protein serves as the catalytic component of the active enzymes, which catalyzes the hydrolysis of the ATP coupled with the exchange of sodium and potassium across the plasma membrane. Additionally, this action potential assists in creating an electrochemical gradient of sodium and potassium ions by delivering the energy for the active transport of numerous nutrients. Therefore, the NA+/K+ pump functions by having to transport sodium and potassium ions across the cell membrane in a 3 to 2 ratio (3 Na+ out and 2 K+ in). By doing this, the membrane potential increases its stability and therefore is essential in human cells as it constantly maintains an optimal ion balance. In addition, the sodium-potassium pump functions in many systems. A high level of expression can be found in the kidneys as they are responsible for expressing 50 million pumps per cell to filter waste products in the blood, maintain optimal pH's, regulate electrolyte levels, and reabsorb glucose and amino acids. Another important place this ATPase activity can be seen is in the brain as the neurons need this pump to reverse postsynaptic sodium flux to activate action potentials. | + | The primary function of this protein serves as the catalytic component of the active enzymes, which catalyzes the hydrolysis of the ATP coupled with the exchange of sodium and potassium across the plasma membrane. Additionally, this action potential assists in creating an electrochemical gradient of sodium and potassium ions by delivering the energy for the active transport of numerous nutrients. <ref>PMID:30725773</ref> Therefore, the NA+/K+ pump functions by having to transport sodium and potassium ions across the cell membrane in a 3 to 2 ratio (3 Na+ out and 2 K+ in). By doing this, the membrane potential increases its stability and therefore is essential in human cells as it constantly maintains an optimal ion balance. In addition, the sodium-potassium pump functions in many systems. A high level of expression can be found in the kidneys as they are responsible for expressing 50 million pumps per cell to filter waste products in the blood, maintain optimal pH's, regulate electrolyte levels, and reabsorb glucose and amino acids. Another important place this ATPase activity can be seen is in the brain as the neurons need this pump to reverse postsynaptic sodium flux to activate action potentials. |
== Disease == | == Disease == |
Revision as of 02:58, 28 April 2021
Sodium-Potassium Pump
|