Sandbox GGC14

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
== Function ==
== Function ==
-
Acetylcholinesterase functions primarily in the synaptic cleft to stop the signal to the neurotransmitter. This is done by way of a rapid hydrolysis reaction of the neurotransmitter acetylcholine yielding the products acetate, choline and hydrogen ion.
+
Acetylcholinesterase functions primarily in the synaptic cleft to stop the signal to the neurotransmitter. This is done by way of a rapid hydrolysis reaction of acetylcholine yielding the products acetate, choline and a hydrogen ion. In conjunction with its biological function it has an unusually high catalytic activity because considering the fact that it is a serine hydrolase it functions more closely to the rate of a limitation by diffusion control. [1] A big part of the reason that acetylcholinesterase is so active is because of mutagenesis. The mutations noted are at positions 234, 365, and 478, these are all also the active sites of the enzyme. One happens at the acyl ester intermediate while the other two are at a sort of charge relay system.
== Disease ==
== Disease ==

Revision as of 15:22, 28 April 2021

Acetylcholinesterase

Acetylcholinesterase

Drag the structure with the mouse to rotate

References

1. Harel M, Kleywegt GJ, Ravelli RB, Silman I, Sussman JL. Crystal structure of an acetylcholinesterase-fasciculin complex: interaction of a three-fingered toxin from snake venom with its target. Structure. 1995 Dec 15;3(12):1355-66. doi: 10.1016/s0969-2126(01)00273-8. PMID: 8747462.

2. Dvir, H., Silman, I., Harel, M., Rosenberry, T. L., & Sussman, J. L. (2010). Acetylcholinesterase: from 3D structure to function. Chemico-biological interactions, 187(1-3), 10–22. https://doi.org/10.1016/j.cbi.2010.01.042

3. Shafferman, A., Kronman, C., Flashner, Y., Leitner, M., Grosfeld, H., Ordentlich, A., Gozes, Y., Cohen, S., Ariel, N., & Barak, D. (1992). Mutagenesis of human acetylcholinesterase. Identification of residues involved in catalytic activity and in polypeptide folding. The Journal of biological chemistry, 267(25), 17640–17648.

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools