Sandbox GGC5
From Proteopedia
Line 34: | Line 34: | ||
- Phosphate (PO4) ligand on chains A and B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | - Phosphate (PO4) ligand on chains A and B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | ||
- | + | <scene name='78/781193/Po4/1'>PO4 Ligand</scene> | |
- Zinc (Zn) ligand on chains A and B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | - Zinc (Zn) ligand on chains A and B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | ||
+ | <scene name='78/781193/2_zincs/1'>Zinc ions are adjacent to the phosphate to balance the charge</scene> | ||
- | - | + | - 2007 hydrophobic amino acid residues <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. |
+ | <scene name='78/781193/Hydrophobic_amino_acids/1'>hydrophobic amino acid properties </scene> | ||
- | + | - 1878 polar amino acid residues <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | |
+ | <scene name='78/781193/Polar_amino_acids/1'>polar amino acids</scene> | ||
- Sodium (Na+) ion on chain B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | - Sodium (Na+) ion on chain B of Zinc phosphodiesterase ELAC Protein 1 <ref>DOI 10.2210/pdb3ZWF/pdb</ref>. | ||
<scene name='78/781193/Sodium_ion_enlarged/1'>Sodium Ion present</scene> | <scene name='78/781193/Sodium_ion_enlarged/1'>Sodium Ion present</scene> | ||
- | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | ||
</StructureSection> | </StructureSection> |
Revision as of 16:43, 28 April 2021
Contents |
Beta Lactamase
|
Disease
If there are mutations in the tRNase Z metallo-beta lactamases, these enzymes have been implicated in several diseases including prostate cancer [15]. While there is still much to learn about how these lactamases work inter-connectedly with other enzymes, research suggests that metallo-beta lactamases function as cleavage and polyadenylation factors [16].
Evolutionary Considerations
Beta Lactamase protein structure is highly conserved across both prokaryotes and eukaryotes [17]. Their presence indicates that these proteins are highly adaptable, with a wide range of substrates [18]. The highly conserved nature of this structure suggests that the genetic material for beta lactamase is ancient in origin [19]. They have found early beta lactamases in deep sea sediment, before the first antibiotic was ever encountered.
This is a sample scene created with SAT to by Group, and another to make of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
References
- ↑ Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub, 2019 Apr 5. PMID:30959050 doi:http://dx.doi.org/10.1016/j.jmb.2019.04.002
- ↑ Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub, 2019 Apr 5. PMID:30959050 doi:http://dx.doi.org/10.1016/j.jmb.2019.04.002
- ↑ Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. beta-Lactamases and beta-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub, 2019 Apr 5. PMID:30959050 doi:http://dx.doi.org/10.1016/j.jmb.2019.04.002
- ↑ https://doi.org/10.1021/cr030102i
- ↑ Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):67-93. doi:, 10.1080/10409230701279118. PMID:17453916 doi:http://dx.doi.org/10.1080/10409230701279118
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ https://doi.org/10.1101/575373
- ↑ Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):67-93. doi:, 10.1080/10409230701279118. PMID:17453916 doi:http://dx.doi.org/10.1080/10409230701279118
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ doi: https://dx.doi.org/10.2210/pdb3ZWF/pdb
- ↑ Dominski Z. Nucleases of the metallo-beta-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol. 2007 Mar-Apr;42(2):67-93. doi:, 10.1080/10409230701279118. PMID:17453916 doi:http://dx.doi.org/10.1080/10409230701279118
- ↑ https://doi.org/10.1101/575373
- ↑ doi: https://dx.doi.org/https
- ↑ https://doi.org/10.1101/575373
- ↑ https://doi.org/10.1101/575373
[1] [2] [3] [4] [5] [6] [7] [8]