Sandbox GGC3

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 18: Line 18:
An alternative mechanism involving the enantiomer of <small>D</small>-luciferin exists, though typically <small>L</small>-luciferin acts as a competitive inhibitor to the bioluminescence-producing reaction<ref name=“Seliger”>Seliger, H. H., McElroy, W. D., White, E. H., & Field, G. F. (1961). Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. ‘’Proceedings of the National Academy of Sciences of the United States of America 47’’(8), 1129-1134. https://doi.org/10.1073/pnas.47.8.1129</ref>, though accounts of light production in small quantities have previously been reported<ref name=“Lembert”>Lembert, N. (1996). Firefly luciferase can use L-luciferin to produce light. ‘’Biochemical Journal 317’’(1), 273-277. https://doi.org/10.1042/bj3170273</ref>. The mechanism by which L-luciferin acts as the substrate in the presence of luciferase (and ATP and Mg<sup>2+</sup>) is the same in the first partial reaction, with both producing the intermediate luciferyl-adenylate. Rather than the oxidative decarboxylation step, the adenyl group (AMP) is substituted with CoA-SH yielding luciferyl-CoA. Furthermore, the stereospecificity of luciferase has shown that even in the presence of CoA-SH, <small>D</small>-luciferin was not converted into luciferyl-CoA but proceeded in being used for the emittance of light<ref name="Nakamura"/>.
An alternative mechanism involving the enantiomer of <small>D</small>-luciferin exists, though typically <small>L</small>-luciferin acts as a competitive inhibitor to the bioluminescence-producing reaction<ref name=“Seliger”>Seliger, H. H., McElroy, W. D., White, E. H., & Field, G. F. (1961). Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. ‘’Proceedings of the National Academy of Sciences of the United States of America 47’’(8), 1129-1134. https://doi.org/10.1073/pnas.47.8.1129</ref>, though accounts of light production in small quantities have previously been reported<ref name=“Lembert”>Lembert, N. (1996). Firefly luciferase can use L-luciferin to produce light. ‘’Biochemical Journal 317’’(1), 273-277. https://doi.org/10.1042/bj3170273</ref>. The mechanism by which L-luciferin acts as the substrate in the presence of luciferase (and ATP and Mg<sup>2+</sup>) is the same in the first partial reaction, with both producing the intermediate luciferyl-adenylate. Rather than the oxidative decarboxylation step, the adenyl group (AMP) is substituted with CoA-SH yielding luciferyl-CoA. Furthermore, the stereospecificity of luciferase has shown that even in the presence of CoA-SH, <small>D</small>-luciferin was not converted into luciferyl-CoA but proceeded in being used for the emittance of light<ref name="Nakamura"/>.
- 
- 
- 

Revision as of 17:03, 28 April 2021

Firefly Luciferase

waluigi menacingly stares

Luciferin-4-monooxygenase. The wild-type luciferase in the adenylate-forming conformation with DLSA (PDB 4G36) and the cross-linked luciferase in the second catalytic conformation with DLSA (PDB 4G37)

Drag the structure with the mouse to rotate

References

  1. Branchini, B. R., Magyar, R. A., Murtiashaw, M. H., Anderson, S. M., Helgerson, L. C., & Zimmer, M. (1999). Site-directed mutagenesis of firefly luciferase active site amino acids: a proposed model for bioluminescence color. Biochemistry 38(40), 13223–13230. https://doi.org/10.1021/bi991181o
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Sundlov, J. A., Fontaine, D. M., Southworth, T. L., Branchini, B. R., & Gulick, A. M. (2012). Crystal Structure of Firefly Luciferase in a Second Catalytic Conformation Supports a Domain Alternation Mechanism. Biochemistry 51(33), 6493-6495. https://doi.org/10.1021/bi300934s
  3. Marahiel, M. A., Stachelhaus, T., & Mootz, H. D. (1997). Modular Peptide Synthetases Involved in Nonribosmal Peptide Synthesis. Chemical Reviews 97(7), 2651-2674. https://doi.org/10.1021/cr960029e
  4. 4.0 4.1 Branchini, B. R., Southworth, T. L., Murtiahsaw, M. H., Wilkinson, S. R., Khattak, N. F., Rosenberg, J. C., & Zimmer, M. (2005). Mutagenesis Evidence that the Partial Reactions of Firefly Bioluminescence are Catalyzed by Different Conformations of the Luciferase C-Terminal Domain. “Biochemistry 44”(5), 1385-1393. https://doi.org/10.1021/bi047903f
  5. 5.0 5.1 5.2 Nakamura, M., Maki, S., Amano, Y., Ohkita, Y., Niwa, K., Hirano, T., Ohmiya, Y., & Niwa, H. (2005). Firefly luciferase exhibits bimodal action depending on the luciferin chirality. “Biochemical and Biophysical Research Communications, 331”(2), 471–475. https://doi.org/10.1016/j.bbrc.2005.03.202
  6. Oba, Y., Ojika, M., & Inouye, S. (2003). Firefly luciferase is a bifunctional enzyme: ATP-dependent monoxygenase and a long chain fatty acyl-CoA synthetase. “FEBS Letters 540”(1-3), 251-254. https://doi.org/10.1016/S0014-5793(03)00272-2
  7. Seliger, H. H., McElroy, W. D., White, E. H., & Field, G. F. (1961). Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. ‘’Proceedings of the National Academy of Sciences of the United States of America 47’’(8), 1129-1134. https://doi.org/10.1073/pnas.47.8.1129
  8. Lembert, N. (1996). Firefly luciferase can use L-luciferin to produce light. ‘’Biochemical Journal 317’’(1), 273-277. https://doi.org/10.1042/bj3170273
  9. Branchini, B. R., Murtiashaw, M. H., Magyar, R. A., Anderson, S. M. (2000). The Role of Lysine 529, a Conserved Residue of the Acyl-Adenylate-Forming Enzyme Superfamily, in Firefly Luciferase. Biochemistry 39(18), 5433-5440. https://doi.org/10.1021/bi9928804
  10. Sala-Newby, G. B., & Campbell, A. K. (1991). Engineering a bioluminescent indicator for cyclic AMP-dependent protein kinase. “The Biochemical Journal”, 279 (Pt 3), 727–732. https://doi.org/10.1042/bj2790727
  11. de Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., & Subramani, S. (1987). Firefly luciferase gene: structure and expression in mammalian cells. Molecular and cellular biology, 7(2), 725–737. https://doi.org/10.1128/mcb.7.2.725
  12. de Wet, J. R., Wood, K. V., Helinski, D. R., & DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 82(23), 7870–7873. https://doi.org/10.1073/pnas.82.23.7870
  13. Thorne, N., Shen, M., Lea, W. A., Simeonov, A., Lovell, S., Auld, D. S., & Inglese, J. (2012). Firefly luciferase in chemical biology: a compendium of inhibitors, mechanistic evaluation of chemotypes, and suggested use as a reporter. Chemistry & biology, 19(8), 1060–1072. https://doi.org/10.1016/j.chembiol.2012.07.015
Personal tools