Receptor tyrosine kinases

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
Receptor tyrosine kinases (RTKs) are part of the larger family of protein [[Tyrosine kinase|tyrosine kinases]]. They are the high-affinity cell surface receptors for many polypeptide [[Growth factors|growth factors]], cytokines, and [[Hormone|hormones]]. Approximately 20 different RTK classes have been identified.<ref>PMID:26579483</ref>
Receptor tyrosine kinases (RTKs) are part of the larger family of protein [[Tyrosine kinase|tyrosine kinases]]. They are the high-affinity cell surface receptors for many polypeptide [[Growth factors|growth factors]], cytokines, and [[Hormone|hormones]]. Approximately 20 different RTK classes have been identified.<ref>PMID:26579483</ref>
==RTK class I [[Epidermal Growth Factor Receptor]] family==
==RTK class I [[Epidermal Growth Factor Receptor]] family==
-
[[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. ERBB2 is necessary for heart cells proliferation and regeneration<ref>PMID:25848746</ref>.
+
[[Lapatinib]] is a EGFR inhibitor used in breast cancer treatment. ERBB2 is necessary for heart cells proliferation and regeneration.
-
[[EGFR|Epidermal Growth Factor Receptors]] are overexpressed in many types of human [[Cancer|carcinomas]] including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signalling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. Studies have revealed that the <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins.<ref>PMID:6090945</ref> Erlotinib inhibits the EGFR tyrosine kinase by <scene name='Lapatinib/Egfbb/1'>binding to the ATP-binding site</scene> located within the kinase domain. Residues Met 774, Leu 825, Val 707, Thr 835, Asp 836, Phe 837, Thr 771, Lys 726, Ala 724, & Leu 769 tightly bind the inhibitor in place. Unable to bind ATP, EGFR is incapable of autophosphorylating its C-terminal tyrosines, and the uncontrolled cell-proliferation signal is terminated.<ref>PMID:15284455</ref>
+
EGFRs are overexpressed in many types of human carcinomas including lung, pancreatic, and breast cancer, and are often mutated. This overexpression leads to excessive activation of the anti-apoptotic [[Ras]] signaling cascade, resulting in uncontrolled [[DNA_Replication|DNA synthesis]] and cell proliferation. The <scene name='Lapatinib/Egfr/1'>EGFR tyrosine kinase domain</scene> is responsible for activating this Ras signaling cascade. Upon binding ligands like Epidermal Growth Factor, EGFR dimerizes and autophosphorylates several tyrosine residues at its C-terminal domain. Upon phosphorylation, EGFR undergoes a significant conformational shift, revealing an additional binding site capable of binding and activating downstream signaling proteins.
-
[[Gefitinib]] inhibits the EGFR by <scene name='Gefitinib/Bound/1'>binding to the ATP-binding site</scene> located within the kinase domain. Residues Lys 745, Leu 788, Ala 743, Thr 790, Gln 791, Met 193, Pro 794, Gly 796, Asp 800, Ser 719, Glu 762, & Met 766 tightly bind the inhibitor. Unable to bind ATP, EGFR is incapable of autophosphorylating its C-terminal tyrosines, and the uncontrolled cell-proliferation signal is terminated.<ref>PMID:15284455</ref>
+
[[Gefitinib]] inhibits the EGFR by <scene name='Gefitinib/Bound/1'>binding to the ATP-binding site</scene> located within the kinase domain. Residues Lys 745, Leu 788, Ala 743, Thr 790, Gln 791, Met 193, Pro 794, Gly 796, Asp 800, Ser 719, Glu 762, & Met 766 tightly bind the inhibitor. Unable to bind ATP, EGFR is incapable of autophosphorylating its C-terminal tyrosines, and the uncontrolled cell-proliferation signal is terminated.
-
[[Erlotinib]] inhibits the EGFR by <scene name='Erlotinib/Bound/1'>binding to the ATP-binding site</scene> located within the kinase domain. EGFR uses residues Asp 831, Lys 721, Thr 766, Leu 820, Gly 772, Phe 771, Leu 694, Pro 770, Met 769, Leu 768, Gln 767 & Ala 719 to tightly bind the inhibitor. Unable to bind ATP, EGFR is incapable of autophosphorylating its C-terminal tyrosines, and the uncontrolled cell-proliferation signal is terminated.<ref>PMID:15284455</ref>
+
[[Erlotinib]] inhibits the EGFR by <scene name='Erlotinib/Bound/1'>binding to the ATP-binding site</scene> located within the kinase domain. EGFR uses residues Asp 831, Lys 721, Thr 766, Leu 820, Gly 772, Phe 771, Leu 694, Pro 770, Met 769, Leu 768, Gln 767 & Ala 719 to tightly bind the inhibitor. Unable to bind ATP, EGFR is incapable of autophosphorylating its C-terminal tyrosines, and the uncontrolled cell-proliferation signal is terminated.
'''A Possible Strategy against Head and Neck Cancer: ''In Silico''. Investigation of Three-in-One inhibitors'''<ref>doi 10.1080/07391102.2012.736773</ref>
'''A Possible Strategy against Head and Neck Cancer: ''In Silico''. Investigation of Three-in-One inhibitors'''<ref>doi 10.1080/07391102.2012.736773</ref>

Revision as of 16:54, 5 May 2021

Solved Structures of Ephrin Type-A Receptors, 1dq8

Drag the structure with the mouse to rotate

References

  1. Segaliny AI, Tellez-Gabriel M, Heymann MF, Heymann D. Receptor tyrosine kinases: Characterisation, mechanism of action and therapeutic interests for bone cancers. J Bone Oncol. 2015 Jan 23;4(1):1-12. doi: 10.1016/j.jbo.2015.01.001. eCollection , 2015 Mar. PMID:26579483 doi:http://dx.doi.org/10.1016/j.jbo.2015.01.001
  2. Tsou YA, Chen KC, Chang SS, Wen YR, Chen CY. A possible strategy against head and neck cancer: in silico investigation of three-in-one inhibitors. J Biomol Struct Dyn. 2012 Nov 12. PMID:23140436 doi:10.1080/07391102.2012.736773
  3. Wu J, Tseng YD, Xu CF, Neubert TA, White MF, Hubbard SR. Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nat Struct Mol Biol. 2008 Mar;15(3):251-8. Epub 2008 Feb 17. PMID:18278056 doi:10.1038/nsmb.1388
  4. Petersen MC, Madiraju AK, Gassaway BM, Marcel M, Nasiri AR, Butrico G, Marcucci MJ, Zhang D, Abulizi A, Zhang XM, Philbrick W, Hubbard SR, Jurczak MJ, Samuel VT, Rinehart J, Shulman GI. Insulin receptor Thr1160 phosphorylation mediates lipid-induced hepatic insulin resistance. J Clin Invest. 2016 Nov 1;126(11):4361-4371. doi: 10.1172/JCI86013. Epub 2016 Oct, 17. PMID:27760050 doi:http://dx.doi.org/10.1172/JCI86013

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools