|
|
Line 1: |
Line 1: |
| | | |
| ==Solution structure of CCL2 in complex with glycan== | | ==Solution structure of CCL2 in complex with glycan== |
- | <StructureSection load='2liq' size='340' side='right' caption='[[2liq]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2liq' size='340' side='right'caption='[[2liq]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2liq]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Copci Copci]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LIQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2LIQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2liq]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Agaricus_cinereus Agaricus cinereus]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LIQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2LIQ FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=MAG:BETA-METHYL-N-ACETYL-D-GLUCOSAMINE'>MAG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FUC:ALPHA-L-FUCOSE'>FUC</scene>, <scene name='pdbligand=MAG:BETA-METHYL-N-ACETYL-D-GLUCOSAMINE'>MAG</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2lie|2lie]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2lie|2lie]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ccl2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5346 COPCI])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">ccl2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5346 Agaricus cinereus])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2liq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2liq OCA], [http://pdbe.org/2liq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2liq RCSB], [http://www.ebi.ac.uk/pdbsum/2liq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2liq ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2liq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2liq OCA], [https://pdbe.org/2liq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2liq RCSB], [https://www.ebi.ac.uk/pdbsum/2liq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2liq ProSAT]</span></td></tr> |
| </table> | | </table> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
Line 22: |
Line 22: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Copci]] | + | [[Category: Agaricus cinereus]] |
| + | [[Category: Large Structures]] |
| [[Category: Aebi, M]] | | [[Category: Aebi, M]] |
| [[Category: Allain, F H.T]] | | [[Category: Allain, F H.T]] |
| Structural highlights
Publication Abstract from PubMed
Discrimination between self and non-self is a prerequisite for any defence mechanism; in innate defence, this discrimination is often mediated by lectins recognizing non-self carbohydrate structures and so relies on an arsenal of host lectins with different specificities towards target organism carbohydrate structures. Recently, cytoplasmic lectins isolated from fungal fruiting bodies have been shown to play a role in the defence of multicellular fungi against predators and parasites. Here, we present a novel fruiting body lectin, CCL2, from the ink cap mushroom Coprinopsis cinerea. We demonstrate the toxicity of the lectin towards Caenorhabditis elegans and Drosophila melanogaster and present its NMR solution structure in complex with the trisaccharide, GlcNAcbeta1,4[Fucalpha1,3]GlcNAc, to which it binds with high specificity and affinity in vitro. The structure reveals that the monomeric CCL2 adopts a beta-trefoil fold and recognizes the trisaccharide by a single, topologically novel carbohydrate-binding site. Site-directed mutagenesis of CCL2 and identification of C. elegans mutants resistant to this lectin show that its nematotoxicity is mediated by binding to alpha1,3-fucosylated N-glycan core structures of nematode glycoproteins; feeding with fluorescently labeled CCL2 demonstrates that these target glycoproteins localize to the C. elegans intestine. Since the identified glycoepitope is characteristic for invertebrates but absent from fungi, our data show that the defence function of fruiting body lectins is based on the specific recognition of non-self carbohydrate structures. The trisaccharide specifically recognized by CCL2 is a key carbohydrate determinant of pollen and insect venom allergens implying this particular glycoepitope is targeted by both fungal defence and mammalian immune systems. In summary, our results demonstrate how the plasticity of a common protein fold can contribute to the recognition and control of antagonists by an innate defence mechanism, whereby the monovalency of the lectin for its ligand implies a novel mechanism of lectin-mediated toxicity.
Plasticity of the beta-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System.,Schubert M, Bleuler-Martinez S, Butschi A, Walti MA, Egloff P, Stutz K, Yan S, Wilson IB, Hengartner MO, Aebi M, Allain FH, Kunzler M PLoS Pathog. 2012 May;8(5):e1002706. Epub 2012 May 17. PMID:22615566[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Schubert M, Bleuler-Martinez S, Butschi A, Walti MA, Egloff P, Stutz K, Yan S, Wilson IB, Hengartner MO, Aebi M, Allain FH, Kunzler M. Plasticity of the beta-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System. PLoS Pathog. 2012 May;8(5):e1002706. Epub 2012 May 17. PMID:22615566 doi:10.1371/journal.ppat.1002706
|