|
|
| Line 1: |
Line 1: |
| - | {{Large structure}}
| + | |
| | ==Interaction of Human S100A6 (C3S) with V domain of Receptor for Advanced Glycation End products (RAGE)== | | ==Interaction of Human S100A6 (C3S) with V domain of Receptor for Advanced Glycation End products (RAGE)== |
| - | <StructureSection load='2m1k' size='340' side='right' caption='[[2m1k]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2m1k' size='340' side='right'caption='[[2m1k]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[2m1k]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2M1K OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2M1K FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2m1k]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2M1K OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2M1K FirstGlance]. <br> |
| - | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1k9k|1k9k]], [[2e5e|2e5e]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1k9k|1k9k]], [[2e5e|2e5e]]</div></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CACY, S100A6 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), AGER, RAGE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CACY, S100A6 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), AGER, RAGE ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2m1k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2m1k OCA], [http://pdbe.org/2m1k PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2m1k RCSB], [http://www.ebi.ac.uk/pdbsum/2m1k PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2m1k ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2m1k FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2m1k OCA], [https://pdbe.org/2m1k PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2m1k RCSB], [https://www.ebi.ac.uk/pdbsum/2m1k PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2m1k ProSAT]</span></td></tr> |
| | </table> | | </table> |
| - | {{Large structure}} | |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/S10A6_HUMAN S10A6_HUMAN]] May function as calcium sensor and contribute to cellular calcium signaling (Potential). May function by interacting with other proteins and indirectly play a role in the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative. [[http://www.uniprot.org/uniprot/RAGE_HUMAN RAGE_HUMAN]] Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space.<ref>PMID:19906677</ref> | + | [[https://www.uniprot.org/uniprot/S10A6_HUMAN S10A6_HUMAN]] May function as calcium sensor and contribute to cellular calcium signaling (Potential). May function by interacting with other proteins and indirectly play a role in the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative. [[https://www.uniprot.org/uniprot/RAGE_HUMAN RAGE_HUMAN]] Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space.<ref>PMID:19906677</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Line 22: |
Line 21: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[S100 protein|S100 protein]] | + | *[[S100 proteins 3D structures|S100 proteins 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| Line 28: |
Line 27: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Human]] | | [[Category: Human]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Gupta, A A]] | | [[Category: Gupta, A A]] |
| | [[Category: Yu, C]] | | [[Category: Yu, C]] |
| Structural highlights
Function
[S10A6_HUMAN] May function as calcium sensor and contribute to cellular calcium signaling (Potential). May function by interacting with other proteins and indirectly play a role in the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative. [RAGE_HUMAN] Mediates interactions of advanced glycosylation end products (AGE). These are nonenzymatically glycosylated proteins which accumulate in vascular tissue in aging and at an accelerated rate in diabetes. Acts as a mediator of both acute and chronic vascular inflammation in conditions such as atherosclerosis and in particular as a complication of diabetes. AGE/RAGE signaling plays an important role in regulating the production/expression of TNF-alpha, oxidative stress, and endothelial dysfunction in type 2 diabetes. Interaction with S100A12 on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Interaction with S100B after myocardial infarction may play a role in myocyte apoptosis by activating ERK1/2 and p53/TP53 signaling (By similarity). Receptor for amyloid beta peptide. Contributes to the translocation of amyloid-beta peptide (ABPP) across the cell membrane from the extracellular to the intracellular space in cortical neurons. ABPP-initiated RAGE signaling, especially stimulation of p38 mitogen-activated protein kinase (MAPK), has the capacity to drive a transport system delivering ABPP as a complex with RAGE to the intraneuronal space.[1]
Publication Abstract from PubMed
S100A6 is involved in several vital biological functions, such as calcium sensing and cell proliferation. It is a homodimeric protein that belongs to the S100 protein family. The receptor for advanced glycation end products (RAGE) has been shown to play a role in the progression of various disease conditions, such as diabetes and immune/inflammatory disorders. Information regarding the association of RAGE with S100 proteins at a molecular level is useful to understand the diversity of the RAGE signaling pathways. In this report, biomolecular NMR techniques were utilized for the resonance assignment of the C3S mutation in human S100A6 and characterizing its interaction with the RAGE V domain. Further binding affinity between S100A6m and the RAGE V domain was determined by isothermal titration calorimetric studies. HADDOCK was used to generate a heterotetramer model of the S100A6m-RAGE V domain complex. This model provides an important insights into the S100-RAGE cellular signaling pathway.
Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE).,Mohan SK, Gupta AA, Yu C Biochem Biophys Res Commun. 2013 May 3;434(2):328-33. doi:, 10.1016/j.bbrc.2013.03.049. Epub 2013 Mar 26. PMID:23537648[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Fang F, Lue LF, Yan S, Xu H, Luddy JS, Chen D, Walker DG, Stern DM, Yan S, Schmidt AM, Chen JX, Yan SS. RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J. 2010 Apr;24(4):1043-55. doi: 10.1096/fj.09-139634. Epub 2009 Nov 11. PMID:19906677 doi:10.1096/fj.09-139634
- ↑ Mohan SK, Gupta AA, Yu C. Interaction of the S100A6 mutant (C3S) with the V domain of the receptor for advanced glycation end products (RAGE). Biochem Biophys Res Commun. 2013 May 3;434(2):328-33. doi:, 10.1016/j.bbrc.2013.03.049. Epub 2013 Mar 26. PMID:23537648 doi:http://dx.doi.org/10.1016/j.bbrc.2013.03.049
|