Intracellular receptors

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 68: Line 68:
The vitamin D nuclear receptor is a ligand-dependent transcription factor that controls multiple biological responses such as cell proliferation, immune responses, and bone mineralization. Numerous 1 alpha,25(OH)(2)D(3) analogues, which exhibit low calcemic side effects and/or antitumoral properties, have been synthesized. In the article, "Structure-function relationships and crystal structures of the vitamin D receptor bound 2 alpha-methyl-(20S,23S)- and 2 alpha-methyl-(20S,23R)-epoxymethano-1 alpha,25-dihydroxyvitamin D3" by Antony, P. et al, they showed that <scene name='56/562378/3a3z/1'>the synthetic analogue (20S,23S)-epoxymethano-1alpha,25-dihydroxyvitamin D(3) (2a)</scene> acts as a 1alpha,25(OH)(2)D(3) superagonist and exhibits both antiproliferative and prodifferentiating properties in vitro. Using this information and on the basis of the crystal structures of human VDR ligand binding domain (hVDR LBD) bound to 1alpha,25(OH)(2)D(3), 2alpha-methyl-1alpha,25(OH)(2)D(3), or 2a, we designed a novel analogue, 2alpha-methyl-(20S,23S)-epoxymethano-1alpha,25-dihydroxyvitamin D(3) (4a), in order to increase its transactivation potency. Here, we solved the crystal structures of the hVDR LBD in complex with the 4a (C23S) and its epimer 4b (C23R) and determined their correlation with specific biological outcomes.
The vitamin D nuclear receptor is a ligand-dependent transcription factor that controls multiple biological responses such as cell proliferation, immune responses, and bone mineralization. Numerous 1 alpha,25(OH)(2)D(3) analogues, which exhibit low calcemic side effects and/or antitumoral properties, have been synthesized. In the article, "Structure-function relationships and crystal structures of the vitamin D receptor bound 2 alpha-methyl-(20S,23S)- and 2 alpha-methyl-(20S,23R)-epoxymethano-1 alpha,25-dihydroxyvitamin D3" by Antony, P. et al, they showed that <scene name='56/562378/3a3z/1'>the synthetic analogue (20S,23S)-epoxymethano-1alpha,25-dihydroxyvitamin D(3) (2a)</scene> acts as a 1alpha,25(OH)(2)D(3) superagonist and exhibits both antiproliferative and prodifferentiating properties in vitro. Using this information and on the basis of the crystal structures of human VDR ligand binding domain (hVDR LBD) bound to 1alpha,25(OH)(2)D(3), 2alpha-methyl-1alpha,25(OH)(2)D(3), or 2a, we designed a novel analogue, 2alpha-methyl-(20S,23S)-epoxymethano-1alpha,25-dihydroxyvitamin D(3) (4a), in order to increase its transactivation potency. Here, we solved the crystal structures of the hVDR LBD in complex with the 4a (C23S) and its epimer 4b (C23R) and determined their correlation with specific biological outcomes.
*[[Pregnane X receptor]]
*[[Pregnane X receptor]]
 +
<scene name='57/571285/Cv/3'>PXR ligand-binding pocket is flexible and allows binding to structurally and chemically distinct ligands among them the macrolide antibiotic rifampicin</scene> which is used in testing tuberculosis.
*[[Retinoid X receptor]]
*[[Retinoid X receptor]]
*[[Estrogen receptor]]
*[[Estrogen receptor]]

Revision as of 13:18, 19 May 2021

Human androgen receptor ligand-binding domain complex with modulator (PDB code 3b5r)

Drag the structure with the mouse to rotate

References

  1. Li MJ, Greenblatt HM, Dym O, Albeck S, Pais A, Gunanathan C, Milstein D, Degani H, Sussman JL. Structure of estradiol metal chelate and estrogen receptor complex: The basis for designing a new class of selective estrogen receptor modulators. J Med Chem. 2011 Apr 7. PMID:21473635 doi:10.1021/jm200192y

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools