|
|
Line 1: |
Line 1: |
| | | |
| ==NMR structure of Fbp28 WW domain T456Y mutant== | | ==NMR structure of Fbp28 WW domain T456Y mutant== |
- | <StructureSection load='2n4w' size='340' side='right' caption='[[2n4w]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | + | <StructureSection load='2n4w' size='340' side='right'caption='[[2n4w]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2n4w]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2N4W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2N4W FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2n4w]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2N4W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2N4W FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1e0l|1e0l]], [[2n4r|2n4r]], [[2n4s|2n4s]], [[2n4t|2n4t]], [[2n4u|2n4u]], [[2n4v|2n4v]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1e0l|1e0l]], [[2n4r|2n4r]], [[2n4s|2n4s]], [[2n4t|2n4t]], [[2n4u|2n4u]], [[2n4v|2n4v]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TCERG1, CA150, TAF2S ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TCERG1, CA150, TAF2S ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2n4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n4w OCA], [http://pdbe.org/2n4w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2n4w RCSB], [http://www.ebi.ac.uk/pdbsum/2n4w PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2n4w ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2n4w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2n4w OCA], [https://pdbe.org/2n4w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2n4w RCSB], [https://www.ebi.ac.uk/pdbsum/2n4w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2n4w ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TCRG1_HUMAN TCRG1_HUMAN]] Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter.<ref>PMID:9315662</ref> <ref>PMID:11604498</ref> | + | [[https://www.uniprot.org/uniprot/TCRG1_HUMAN TCRG1_HUMAN]] Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter.<ref>PMID:9315662</ref> <ref>PMID:11604498</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Macias, M]] | | [[Category: Macias, M]] |
| [[Category: Martin-Malpartida, P]] | | [[Category: Martin-Malpartida, P]] |
| Structural highlights
Function
[TCRG1_HUMAN] Transcription factor that binds RNA polymerase II and inhibits the elongation of transcripts from target promoters. Regulates transcription elongation in a TATA box-dependent manner. Necessary for TAT-dependent activation of the human immunodeficiency virus type 1 (HIV-1) promoter.[1] [2]
Publication Abstract from PubMed
The origins of formation of an intermediate state involved in amyloid formation and ways to prevent it are illustrated with the example of the Formin binding protein 28 (FBP28) WW domain, which folds with biphasic kinetics. Molecular dynamics of protein folding trajectories are used to examine local and global motions and the time dependence of formation of contacts between C(alpha)s and C(beta)s of selected pairs of residues. Focus is placed on the WT FBP28 WW domain and its six mutants (L26D, L26E, L26W, E27Y, T29D, and T29Y), which have structures that are determined by high-resolution NMR spectroscopy. The origins of formation of an intermediate state are elucidated, viz. as formation of hairpin 1 by a hydrophobic collapse mechanism causing significant delay of formation of both hairpins, especially hairpin 2, which facilitates the emergence of an intermediate state. It seems that three-state folding is a major folding scenario for all six mutants and WT. Additionally, two-state and downhill folding scenarios were identified in approximately 15% of the folding trajectories for L26D and L26W, in which both hairpins are formed by the Matheson-Scheraga mechanism much faster than in three-state folding. These results indicate that formation of hairpins connecting two antiparallel beta-strands determines overall folding. The correlations between the local and global motions identified for all folding trajectories lead to the identification of the residues making the main contributions in the formation of the intermediate state. The presented findings may provide an understanding of protein folding intermediates in general and lead to a procedure for their prevention.
Preventing fibril formation of a protein by selective mutation.,Maisuradze GG, Medina J, Kachlishvili K, Krupa P, Mozolewska MA, Martin-Malpartida P, Maisuradze L, Macias MJ, Scheraga HA Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13549-54. doi:, 10.1073/pnas.1518298112. Epub 2015 Oct 19. PMID:26483482[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Sune C, Hayashi T, Liu Y, Lane WS, Young RA, Garcia-Blanco MA. CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol Cell Biol. 1997 Oct;17(10):6029-39. PMID:9315662
- ↑ Goldstrohm AC, Albrecht TR, Sune C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol. 2001 Nov;21(22):7617-28. PMID:11604498 doi:10.1128/MCB.21.22.7617-7628.2001
- ↑ Maisuradze GG, Medina J, Kachlishvili K, Krupa P, Mozolewska MA, Martin-Malpartida P, Maisuradze L, Macias MJ, Scheraga HA. Preventing fibril formation of a protein by selective mutation. Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13549-54. doi:, 10.1073/pnas.1518298112. Epub 2015 Oct 19. PMID:26483482 doi:http://dx.doi.org/10.1073/pnas.1518298112
|