|
|
Line 1: |
Line 1: |
| | | |
| ==Structure of TREX1 in complex with DNA== | | ==Structure of TREX1 in complex with DNA== |
- | <StructureSection load='2o4i' size='340' side='right' caption='[[2o4i]], [[Resolution|resolution]] 3.50Å' scene=''> | + | <StructureSection load='2o4i' size='340' side='right'caption='[[2o4i]], [[Resolution|resolution]] 3.50Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2o4i]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2O4I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2O4I FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2o4i]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Lk3_transgenic_mice Lk3 transgenic mice]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2O4I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2O4I FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2o4g|2o4g]], [[1y97|1y97]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2o4g|2o4g]], [[1y97|1y97]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Trex1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Trex1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10090 LK3 transgenic mice])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Exodeoxyribonuclease_III Exodeoxyribonuclease III], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.11.2 3.1.11.2] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Exodeoxyribonuclease_III Exodeoxyribonuclease III], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.11.2 3.1.11.2] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2o4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2o4i OCA], [http://pdbe.org/2o4i PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2o4i RCSB], [http://www.ebi.ac.uk/pdbsum/2o4i PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2o4i ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2o4i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2o4i OCA], [https://pdbe.org/2o4i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2o4i RCSB], [https://www.ebi.ac.uk/pdbsum/2o4i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2o4i ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TREX1_MOUSE TREX1_MOUSE]] Exonuclease with a preference for double stranded DNA with mismatched 3' termini. May play a role in DNA repair.<ref>PMID:10391904</ref> <ref>PMID:11279105</ref> | + | [[https://www.uniprot.org/uniprot/TREX1_MOUSE TREX1_MOUSE]] Exonuclease with a preference for double stranded DNA with mismatched 3' termini. May play a role in DNA repair.<ref>PMID:10391904</ref> <ref>PMID:11279105</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 32: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Exonuclease|Exonuclease]] | + | *[[Exonuclease 3D structures|Exonuclease 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 38: |
Line 38: |
| </StructureSection> | | </StructureSection> |
| [[Category: Exodeoxyribonuclease III]] | | [[Category: Exodeoxyribonuclease III]] |
| + | [[Category: Large Structures]] |
| [[Category: Lk3 transgenic mice]] | | [[Category: Lk3 transgenic mice]] |
| [[Category: Brucet, M]] | | [[Category: Brucet, M]] |
| Structural highlights
Function
[TREX1_MOUSE] Exonuclease with a preference for double stranded DNA with mismatched 3' termini. May play a role in DNA repair.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
TREX1 is the most abundant mammalian 3' --> 5' DNA exonuclease. It has been described to form part of the SET complex and is responsible for the Aicardi-Goutieres syndrome in humans. Here we show that the exonuclease activity is correlated to the binding preferences toward certain DNA sequences. In particular, we have found three motifs that are selected, GAG, ACA, and CTGC. To elucidate how the discrimination occurs, we determined the crystal structures of two murine TREX1 complexes, with a nucleotide product of the exonuclease reaction, and with a single-stranded DNA substrate. Using confocal microscopy, we observed TREX1 both in nuclear and cytoplasmic subcellular compartments. Remarkably, the presence of TREX1 in the nucleus requires the loss of a C-terminal segment, which we named leucine-rich repeat 3. Furthermore, we detected the presence of a conserved proline-rich region on the surface of TREX1. This observation points to interactions with proline-binding domains. The potential interacting motif "PPPVPRPP" does not contain aromatic residues and thus resembles other sequences that select SH3 and/or Group 2 WW domains. By means of nuclear magnetic resonance titration experiments, we show that, indeed, a polyproline peptide derived from the murine TREX1 sequence interacted with the WW2 domain of the elongation transcription factor CA150. Co-immunoprecipitation studies confirmed this interaction with the full-length TREX1 protein, thereby suggesting that TREX1 participates in more functional complexes than previously thought.
Structure of the dimeric exonuclease TREX1 in complex with DNA displays a proline-rich binding site for WW Domains.,Brucet M, Querol-Audi J, Serra M, Ramirez-Espain X, Bertlik K, Ruiz L, Lloberas J, Macias MJ, Fita I, Celada A J Biol Chem. 2007 May 11;282(19):14547-57. Epub 2007 Mar 13. PMID:17355961[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'-->5' exonucleases. J Biol Chem. 1999 Jul 9;274(28):19655-60. PMID:10391904
- ↑ Mazur DJ, Perrino FW. Excision of 3' termini by the Trex1 and TREX2 3'-->5' exonucleases. Characterization of the recombinant proteins. J Biol Chem. 2001 May 18;276(20):17022-9. Epub 2001 Mar 6. PMID:11279105 doi:http://dx.doi.org/10.1074/jbc.M100623200
- ↑ Brucet M, Querol-Audi J, Serra M, Ramirez-Espain X, Bertlik K, Ruiz L, Lloberas J, Macias MJ, Fita I, Celada A. Structure of the dimeric exonuclease TREX1 in complex with DNA displays a proline-rich binding site for WW Domains. J Biol Chem. 2007 May 11;282(19):14547-57. Epub 2007 Mar 13. PMID:17355961 doi:10.1074/jbc.M700236200
|