1d8d

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='1d8d' size='340' side='right'caption='[[1d8d]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
<StructureSection load='1d8d' size='340' side='right'caption='[[1d8d]], [[Resolution|resolution]] 2.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1d8d]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1D8D OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1D8D FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1d8d]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1D8D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1D8D FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=FII:[(3,7,11-TRIMETHYL-DODECA-2,6,10-TRIENYLOXYCARBAMOYL)-METHYL]-PHOSPHONIC+ACID'>FII</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=FII:[(3,7,11-TRIMETHYL-DODECA-2,6,10-TRIENYLOXYCARBAMOYL)-METHYL]-PHOSPHONIC+ACID'>FII</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ft1|1ft1]], [[1ft2|1ft2]], [[1d8e|1d8e]]</td></tr>
+
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1ft1|1ft1]], [[1ft2|1ft2]], [[1d8e|1d8e]]</div></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Squalene_synthase Squalene synthase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.21 2.5.1.21] </span></td></tr>
+
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Squalene_synthase Squalene synthase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.21 2.5.1.21] </span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1d8d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1d8d OCA], [http://pdbe.org/1d8d PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1d8d RCSB], [http://www.ebi.ac.uk/pdbsum/1d8d PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1d8d ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1d8d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1d8d OCA], [https://pdbe.org/1d8d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1d8d RCSB], [https://www.ebi.ac.uk/pdbsum/1d8d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1d8d ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[http://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref> Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[http://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[http://omim.org/entry/609942 609942]]. Noonan syndrome (NS) [MIM:[http://omim.org/entry/163950 163950]] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref> Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[http://omim.org/entry/613659 613659]]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref> Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref> Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[http://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.
+
[[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:[https://omim.org/entry/601626 601626]]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development.<ref>PMID:8955068</ref> Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:[https://omim.org/entry/607785 607785]]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:[https://omim.org/entry/609942 609942]]. Noonan syndrome (NS) [MIM:[https://omim.org/entry/163950 163950]] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.<ref>PMID:16773572</ref> <ref>PMID:16474405</ref> <ref>PMID:17468812</ref> <ref>PMID:17056636</ref> <ref>PMID:19396835</ref> <ref>PMID:20949621</ref> Defects in KRAS are a cause of gastric cancer (GASC) [MIM:[https://omim.org/entry/613659 613659]]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.<ref>PMID:3034404</ref> <ref>PMID:7773929</ref> <ref>PMID:14534542</ref> Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.<ref>PMID:8439212</ref> Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:[https://omim.org/entry/115150 115150]]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/FNTA_RAT FNTA_RAT]] Catalyzes the transfer of a farnesyl or geranyl-geranyl moiety from farnesyl or geranyl-geranyl pyrophosphate to a cysteine at the fourth position from the C-terminus of several proteins having the C-terminal sequence Cys-aliphatic-aliphatic-X. The alpha subunit is thought to participate in a stable complex with the substrate. The beta subunit binds the peptide substrate. Through RAC1 prenylation and activation may positively regulate neuromuscular junction development downstream of MUSK (By similarity). [[http://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. [[http://www.uniprot.org/uniprot/FNTB_RAT FNTB_RAT]] Catalyzes the transfer of a farnesyl moiety from farnesyl pyrophosphate to a cysteine at the fourth position from the C-terminus of several proteins. The beta subunit is responsible for peptide-binding.
+
[[https://www.uniprot.org/uniprot/FNTA_RAT FNTA_RAT]] Catalyzes the transfer of a farnesyl or geranyl-geranyl moiety from farnesyl or geranyl-geranyl pyrophosphate to a cysteine at the fourth position from the C-terminus of several proteins having the C-terminal sequence Cys-aliphatic-aliphatic-X. The alpha subunit is thought to participate in a stable complex with the substrate. The beta subunit binds the peptide substrate. Through RAC1 prenylation and activation may positively regulate neuromuscular junction development downstream of MUSK (By similarity). [[https://www.uniprot.org/uniprot/RASK_HUMAN RASK_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. [[https://www.uniprot.org/uniprot/FNTB_RAT FNTB_RAT]] Catalyzes the transfer of a farnesyl moiety from farnesyl pyrophosphate to a cysteine at the fourth position from the C-terminus of several proteins. The beta subunit is responsible for peptide-binding.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 10:43, 14 July 2021

CO-CRYSTAL STRUCTURE OF RAT PROTEIN FARNESYLTRANSFERASE COMPLEXED WITH A K-RAS4B PEPTIDE SUBSTRATE AND FPP ANALOG AT 2.0A RESOLUTION

PDB ID 1d8d

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools