|
|
Line 3: |
Line 3: |
| <StructureSection load='1eq2' size='340' side='right'caption='[[1eq2]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='1eq2' size='340' side='right'caption='[[1eq2]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1eq2]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EQ2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EQ2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1eq2]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EQ2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1EQ2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ADQ:ADENOSINE-5-DIPHOSPHATE-GLUCOSE'>ADQ</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADQ:ADENOSINE-5-DIPHOSPHATE-GLUCOSE'>ADQ</scene>, <scene name='pdbligand=NAP:NADP+NICOTINAMIDE-ADENINE-DINUCLEOTIDE+PHOSPHATE'>NAP</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/ADP-glyceromanno-heptose_6-epimerase ADP-glyceromanno-heptose 6-epimerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.3.20 5.1.3.20] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/ADP-glyceromanno-heptose_6-epimerase ADP-glyceromanno-heptose 6-epimerase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.1.3.20 5.1.3.20] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1eq2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1eq2 OCA], [http://pdbe.org/1eq2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1eq2 RCSB], [http://www.ebi.ac.uk/pdbsum/1eq2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1eq2 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1eq2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1eq2 OCA], [https://pdbe.org/1eq2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1eq2 RCSB], [https://www.ebi.ac.uk/pdbsum/1eq2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1eq2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/HLDD_ECOLI HLDD_ECOLI]] Catalyzes the interconversion between ADP-D-glycero-beta-D-manno-heptose and ADP-L-glycero-beta-D-manno-heptose via an epimerization at carbon 6 of the heptose.<ref>PMID:6337148</ref> | + | [[https://www.uniprot.org/uniprot/HLDD_ECOLI HLDD_ECOLI]] Catalyzes the interconversion between ADP-D-glycero-beta-D-manno-heptose and ADP-L-glycero-beta-D-manno-heptose via an epimerization at carbon 6 of the heptose.<ref>PMID:6337148</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 30: |
Line 30: |
| </div> | | </div> |
| <div class="pdbe-citations 1eq2" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 1eq2" style="background-color:#fffaf0;"></div> |
- | | |
- | ==See Also== | |
- | *[[InhA|InhA]] | |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Function
[HLDD_ECOLI] Catalyzes the interconversion between ADP-D-glycero-beta-D-manno-heptose and ADP-L-glycero-beta-D-manno-heptose via an epimerization at carbon 6 of the heptose.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
BACKGROUND: ADP-L-glycero--mannoheptose 6-epimerase (AGME) is required for lipopolysaccharide (LPS) biosynthesis in most genera of pathogenic and non-pathogenic Gram-negative bacteria. It catalyzes the interconversion of ADP-D-glycero-D-mannoheptose and ADP-L-glycero-D-mannoheptose, a precursor of the seven-carbon sugar L-glycero-mannoheptose (heptose). Heptose is an obligatory component of the LPS core domain; its absence results in a truncated LPS structure resulting in susceptibility to hydrophobic antibiotics. Heptose is not found in mammalian cells, thus its biosynthetic pathway in bacteria presents a unique target for the design of novel antimicrobial agents. RESULTS: The structure of AGME, in complex with NADP and the catalytic inhibitor ADP-glucose, has been determined at 2.0 A resolution by multiwavelength anomalous diffraction (MAD) phasing methods. AGME is a homopentameric enzyme, which crystallizes with two pentamers in the asymmetric unit. The location of 70 crystallographically independent selenium sites was a key step in the structure determination process. Each monomer comprises two domains: a large N-terminal domain, consisting of a modified seven-stranded Rossmann fold that is associated with NADP binding; and a smaller alpha/beta C-terminal domain involved in substrate binding. CONCLUSIONS: The first structure of an LPS core biosynthetic enzyme leads to an understanding of the mechanism of the conversion between ADP-D-glycero--mannoheptose and ADP-L-glycero-D-mannoheptose. On the basis of its high structural similarity to UDP-galactose epimerase and the three-dimensional positions of the conserved residues Ser116, Tyr140 and Lys144, AGME was classified as a member of the short-chain dehydrogenase/reductase (SDR) superfamily. This study should prove useful in the design of mechanistic and structure-based inhibitors of the AGME catalyzed reaction.
The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: catalysis with a twist.,Deacon AM, Ni YS, Coleman WG Jr, Ealick SE Structure. 2000 May 15;8(5):453-62. PMID:10896473[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Coleman WG Jr. The rfaD gene codes for ADP-L-glycero-D-mannoheptose-6-epimerase. An enzyme required for lipopolysaccharide core biosynthesis. J Biol Chem. 1983 Feb 10;258(3):1985-90. PMID:6337148
- ↑ Deacon AM, Ni YS, Coleman WG Jr, Ealick SE. The crystal structure of ADP-L-glycero-D-mannoheptose 6-epimerase: catalysis with a twist. Structure. 2000 May 15;8(5):453-62. PMID:10896473
|