|
|
| Line 1: |
Line 1: |
| | | | |
| | ==E. coli Quinol fumarate reductase FrdA T234A mutation== | | ==E. coli Quinol fumarate reductase FrdA T234A mutation== |
| - | <StructureSection load='3cir' size='340' side='right' caption='[[3cir]], [[Resolution|resolution]] 3.65Å' scene=''> | + | <StructureSection load='3cir' size='340' side='right'caption='[[3cir]], [[Resolution|resolution]] 3.65Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[3cir]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CIR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3CIR FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3cir]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3CIR OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3CIR FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=F3S:FE3-S4+CLUSTER'>F3S</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=F3S:FE3-S4+CLUSTER'>F3S</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FrdA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdB ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdC ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FrdA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdB ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdC ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895]), FrdD ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Succinate_dehydrogenase Succinate dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.99.1 1.3.99.1] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Succinate_dehydrogenase Succinate dehydrogenase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.99.1 1.3.99.1] </span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3cir FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cir OCA], [http://pdbe.org/3cir PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3cir RCSB], [http://www.ebi.ac.uk/pdbsum/3cir PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3cir ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3cir FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3cir OCA], [https://pdbe.org/3cir PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3cir RCSB], [https://www.ebi.ac.uk/pdbsum/3cir PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3cir ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/FRDD_ECOLI FRDD_ECOLI]] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00709] [[http://www.uniprot.org/uniprot/FRDA_ECOLI FRDA_ECOLI]] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. [[http://www.uniprot.org/uniprot/FRDC_ECOLI FRDC_ECOLI]] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00708] [[http://www.uniprot.org/uniprot/FRDB_ECOLI FRDB_ECOLI]] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. | + | [[https://www.uniprot.org/uniprot/FRDD_ECOLI FRDD_ECOLI]] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00709] [[https://www.uniprot.org/uniprot/FRDA_ECOLI FRDA_ECOLI]] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. [[https://www.uniprot.org/uniprot/FRDC_ECOLI FRDC_ECOLI]] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00708] [[https://www.uniprot.org/uniprot/FRDB_ECOLI FRDB_ECOLI]] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 35: |
Line 35: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Bacillus coli migula 1895]] | | [[Category: Bacillus coli migula 1895]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Succinate dehydrogenase]] | | [[Category: Succinate dehydrogenase]] |
| | [[Category: Cecchini, G]] | | [[Category: Cecchini, G]] |
| Structural highlights
3cir is a 8 chain structure with sequence from "bacillus_coli"_migula_1895 "bacillus coli" migula 1895. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| | Ligands: | , , , |
| Gene: | FrdA ("Bacillus coli" Migula 1895), FrdB ("Bacillus coli" Migula 1895), FrdC ("Bacillus coli" Migula 1895), FrdD ("Bacillus coli" Migula 1895) |
| Activity: | Succinate dehydrogenase, with EC number 1.3.99.1 |
| Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[FRDD_ECOLI] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00709] [FRDA_ECOLI] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. [FRDC_ECOLI] Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane.[HAMAP-Rule:MF_00708] [FRDB_ECOLI] Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
In Escherichia coli, the complex II superfamily members succinate:ubiquinone oxidoreductase (SQR) and quinol:fumarate reductase (QFR) participate in aerobic and anaerobic respiration, respectively. Complex II enzymes catalyze succinate and fumarate interconversion at the interface of two domains of the soluble flavoprotein subunit, the FAD binding domain and the capping domain. An 11-amino acid loop in the capping domain (Thr-A234 to Thr-A244 in quinol:fumarate reductase) begins at the interdomain hinge and covers the active site. Amino acids of this loop interact with both the substrate and a proton shuttle, potentially coordinating substrate binding and the proton shuttle protonation state. To assess the loop's role in catalysis, two threonine residues were mutated to alanine: QFR Thr-A244 (act-T; Thr-A254 in SQR), which hydrogen-bonds to the substrate at the active site, and QFR Thr-A234 (hinge-T; Thr-A244 in SQR), which is located at the hinge and hydrogen-bonds the proton shuttle. Both mutations impair catalysis and decrease substrate binding. The crystal structure of the hinge-T mutation reveals a reorientation between the FAD-binding and capping domains that accompanies proton shuttle alteration. Taken together, hydrogen bonding from act-T to substrate may coordinate with interdomain motions to twist the double bond of fumarate and introduce the strain important for attaining the transition state.
A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II.,Tomasiak TM, Maklashina E, Cecchini G, Iverson TM J Biol Chem. 2008 May 30;283(22):15460-8. Epub 2008 Apr 2. PMID:18385138[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Tomasiak TM, Maklashina E, Cecchini G, Iverson TM. A threonine on the active site loop controls transition state formation in Escherichia coli respiratory complex II. J Biol Chem. 2008 May 30;283(22):15460-8. Epub 2008 Apr 2. PMID:18385138 doi:10.1074/jbc.M801372200
|