|
|
Line 3: |
Line 3: |
| <StructureSection load='1id8' size='340' side='right'caption='[[1id8]], [[NMR_Ensembles_of_Models | 15 NMR models]]' scene=''> | | <StructureSection load='1id8' size='340' side='right'caption='[[1id8]], [[NMR_Ensembles_of_Models | 15 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1id8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"clostridium_tetanomorphum"_bulloch_et_al._1919 "clostridium tetanomorphum" bulloch et al. 1919]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ID8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1ID8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1id8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"clostridium_tetanomorphum"_bulloch_et_al._1919 "clostridium tetanomorphum" bulloch et al. 1919]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1ID8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1ID8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DBI:PHOSPHORIC+ACID+MONO-[5-(5,6-DIMETHYL-BENZOIMIDAZOL-1-YL)-4-HYDROXY-2-HYDROXYMETHYL-TETRAHYDRO-FURAN-3-YL]+ESTER'>DBI</scene>, <scene name='pdbligand=FOP:2-HYDROXY-PROPYL-AMMONIUM'>FOP</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DBI:PHOSPHORIC+ACID+MONO-[5-(5,6-DIMETHYL-BENZOIMIDAZOL-1-YL)-4-HYDROXY-2-HYDROXYMETHYL-TETRAHYDRO-FURAN-3-YL]+ESTER'>DBI</scene>, <scene name='pdbligand=FOP:2-HYDROXY-PROPYL-AMMONIUM'>FOP</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fmf|1fmf]], [[1cb7|1cb7]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1fmf|1fmf]], [[1cb7|1cb7]]</div></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Methylaspartate_mutase Methylaspartate mutase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.99.1 5.4.99.1] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Methylaspartate_mutase Methylaspartate mutase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=5.4.99.1 5.4.99.1] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1id8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1id8 OCA], [http://pdbe.org/1id8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1id8 RCSB], [http://www.ebi.ac.uk/pdbsum/1id8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1id8 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1id8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1id8 OCA], [https://pdbe.org/1id8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1id8 RCSB], [https://www.ebi.ac.uk/pdbsum/1id8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1id8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GMSS_CLOTT GMSS_CLOTT]] Catalyzes the carbon skeleton rearrangement of L-glutamate to L-threo-3-methylaspartate ((2S,3S)-3-methylaspartate).[HAMAP-Rule:MF_00526]<ref>PMID:8051138</ref> | + | [[https://www.uniprot.org/uniprot/GMSS_CLOTT GMSS_CLOTT]] Catalyzes the carbon skeleton rearrangement of L-glutamate to L-threo-3-methylaspartate ((2S,3S)-3-methylaspartate).[HAMAP-Rule:MF_00526]<ref>PMID:8051138</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[GMSS_CLOTT] Catalyzes the carbon skeleton rearrangement of L-glutamate to L-threo-3-methylaspartate ((2S,3S)-3-methylaspartate).[HAMAP-Rule:MF_00526][1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Glutamate mutase from Clostridium tetanomorphum binds coenzyme B(12) in a base-off/His-on form, in which the nitrogenous ligand of the B(12)-nucleotide function is displaced from cobalt by a conserved histidine. The effect of binding the B(12)-nucleotide moiety to MutS, the B(12)-binding subunit of glutamate mutase, was investigated using NMR spectroscopic methods. Binding of the B(12)-nucleotide to MutS was determined to occur with K(d)=5.6(+/-0.7) mM and to be accompanied by a specific conformational change in the protein. The nucleotide binding cleft of the apo-protein, which is formed by a dynamic segment with propensity for partial alpha-helical conformation (the "nascent" alpha-helix), becomes completely structured upon binding of the B(12)-nucleotide, with formation of helix alpha1. In contrast, the segment containing the conserved residues of the B(12)-binding Asp-x-His-x-x-Gly motif remains highly dynamic in the protein/B(12)-nucleotide complex. From relaxation studies, the time constant tau, which characterizes the time scale for the formation of helix alpha1, was estimated to be about 30 micros (15)N and was the same in both, apo-protein and nucleotide-bound protein. Thus, the binding of the B(12)-nucleotide moiety does not significantly alter the kinetics of helix formation, but only shifts the equilibrium towards the structured fold. These results indicate MutS to be structured in such a way, as to be able to trap the nucleotide segment of the base-off form of coenzyme B(12) and provide, accordingly, the first structural clues as to how the process of B(12)-binding occurs.
The B(12)-binding subunit of glutamate mutase from Clostridium tetanomorphum traps the nucleotide moiety of coenzyme B(12).,Tollinger M, Eichmuller C, Konrat R, Huhta MS, Marsh EN, Krautler B J Mol Biol. 2001 Jun 8;309(3):777-91. PMID:11397096[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Holloway DE, Marsh EN. Adenosylcobalamin-dependent glutamate mutase from Clostridium tetanomorphum. Overexpression in Escherichia coli, purification, and characterization of the recombinant enzyme. J Biol Chem. 1994 Aug 12;269(32):20425-30. PMID:8051138
- ↑ Tollinger M, Eichmuller C, Konrat R, Huhta MS, Marsh EN, Krautler B. The B(12)-binding subunit of glutamate mutase from Clostridium tetanomorphum traps the nucleotide moiety of coenzyme B(12). J Mol Biol. 2001 Jun 8;309(3):777-91. PMID:11397096 doi:10.1006/jmbi.2001.4696
|