6pm3

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (06:24, 25 August 2021) (edit) (undo)
 
Line 1: Line 1:
==CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, closed state==
==CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, closed state==
-
<StructureSection load='6pm3' size='340' side='right'caption='[[6pm3]]' scene=''>
+
<StructureSection load='6pm3' size='340' side='right'caption='[[6pm3]], [[Resolution|resolution]] 3.00&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PM3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PM3 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6pm3]] is a 5 chain structure with sequence from [https://en.wikipedia.org/wiki/Brachidanio_rerio Brachidanio rerio]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PM3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6PM3 FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6pm3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6pm3 OCA], [https://pdbe.org/6pm3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6pm3 RCSB], [https://www.ebi.ac.uk/pdbsum/6pm3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6pm3 ProSAT]</span></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=TAU:2-AMINOETHANESULFONIC+ACID'>TAU</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">glra1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=7955 Brachidanio rerio])</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6pm3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6pm3 OCA], [https://pdbe.org/6pm3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6pm3 RCSB], [https://www.ebi.ac.uk/pdbsum/6pm3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6pm3 ProSAT]</span></td></tr>
</table>
</table>
 +
== Function ==
 +
[[https://www.uniprot.org/uniprot/GLRA1_DANRE GLRA1_DANRE]] Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine (PubMed:10188956, PubMed:26344198). Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol (By similarity).[UniProtKB:P23415]<ref>PMID:10188956</ref> <ref>PMID:26344198</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and gamma-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.
 +
 +
Mechanism of gating and partial agonist action in the glycine receptor.,Yu J, Zhu H, Lape R, Greiner T, Du J, Lu W, Sivilotti L, Gouaux E Cell. 2021 Feb 18;184(4):957-968.e21. doi: 10.1016/j.cell.2021.01.026. Epub 2021 , Feb 9. PMID:33567265<ref>PMID:33567265</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6pm3" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Brachidanio rerio]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Gouaux E]]
+
[[Category: Gouaux, E]]
-
[[Category: Yu J]]
+
[[Category: Yu, J]]
-
[[Category: Zhu H]]
+
[[Category: Zhu, H]]
 +
[[Category: Cryoem]]
 +
[[Category: Glycine receptor]]
 +
[[Category: Membrane protein]]
 +
[[Category: Sma]]

Current revision

CryoEM structure of zebra fish alpha-1 glycine receptor bound with Taurine in SMA, closed state

PDB ID 6pm3

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools