|
|
Line 3: |
Line 3: |
| <StructureSection load='1mus' size='340' side='right'caption='[[1mus]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='1mus' size='340' side='right'caption='[[1mus]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1mus]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. The December 2006 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Transposase'' by David S. Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2006_12 10.2210/rcsb_pdb/mom_2006_12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MUS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1MUS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1mus]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. The December 2006 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Transposase'' by David S. Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2006_12 10.2210/rcsb_pdb/mom_2006_12]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MUS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1MUS FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=EDO:1,2-ETHANEDIOL'>EDO</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1mur|1mur]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1mur|1mur]]</div></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mus OCA], [http://pdbe.org/1mus PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1mus RCSB], [http://www.ebi.ac.uk/pdbsum/1mus PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1mus ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1mus FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mus OCA], [https://pdbe.org/1mus PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1mus RCSB], [https://www.ebi.ac.uk/pdbsum/1mus PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1mus ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TN5P_ECOLX TN5P_ECOLX]] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).<ref>PMID:6260374</ref> <ref>PMID:6291786</ref> <ref>PMID:6303899</ref> <ref>PMID:1310499</ref> <ref>PMID:8226636</ref> <ref>PMID:8871560</ref> <ref>PMID:11877443</ref> <ref>PMID:12367522</ref> | + | [[https://www.uniprot.org/uniprot/TN5P_ECOLX TN5P_ECOLX]] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).<ref>PMID:6260374</ref> <ref>PMID:6291786</ref> <ref>PMID:6303899</ref> <ref>PMID:1310499</ref> <ref>PMID:8226636</ref> <ref>PMID:8871560</ref> <ref>PMID:11877443</ref> <ref>PMID:12367522</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 31: |
Line 31: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Transposase|Transposase]] | + | *[[Transposase 3D structures|Transposase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Function
[TN5P_ECOLX] Mediates transposition of transposon Tn5 by a 'cut and paste' mechanism. First, the monomeric transposase binds the 19 bp inverted DNA repeats flanking the transposon. Then, dimerization of the DNA-bound transposase creates a synaptic DNA complex. After nicking of the first DNA strand, excision of the transposon proceeds through a series of intermediates. The transposase then mediates the insertion of the transposon at a new site by strand transfer. The activity of the wild-type transposase is very low, and is further inhibited by dimerization with the transposase inhibitor (inh).[1] [2] [3] [4] [5] [6] [7] [8]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Prokaryotic transposon 5 (Tn5) serves as a model system for studying the molecular mechanism of DNA transposition. Elucidation of the X-ray co-crystal structure of Tn5 transposase complexed with a DNA recognition end sequence provided the first three-dimensional picture of an intermediate in a transposition/retroviral integration pathway. The many Tn5 transposase-DNA co-crystal structures now available complement biochemical and genetic studies, allowing a comprehensive and detailed understanding of transposition mechanisms. Specifically, the structures reveal two different types of protein-DNA contacts: cis contacts, required for initial DNA recognition, and trans contacts, required for catalysis. Protein-protein contacts required for synapsis are also seen. Finally, the two divalent metals in the active site of the transposase support a 'two-metal-ion' mechanism for Tn5 transposition.
Structure/function insights into Tn5 transposition.,Steiniger-White M, Rayment I, Reznikoff WS Curr Opin Struct Biol. 2004 Feb;14(1):50-7. PMID:15102449[9]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rothstein SJ, Reznikoff WS. The functional differences in the inverted repeats of Tn5 are caused by a single base pair nonhomology. Cell. 1981 Jan;23(1):191-9. PMID:6260374
- ↑ Johnson RC, Yin JC, Reznikoff WS. Control of Tn5 transposition in Escherichia coli is mediated by protein from the right repeat. Cell. 1982 Oct;30(3):873-82. PMID:6291786
- ↑ Lowe JB, Berg DE. A product of the TN5 transposase gene inhibits transposition. Genetics. 1983 Apr;103(4):605-15. PMID:6303899
- ↑ Wiegand TW, Reznikoff WS. Characterization of two hypertransposing Tn5 mutants. J Bacteriol. 1992 Feb;174(4):1229-39. PMID:1310499
- ↑ de la Cruz NB, Weinreich MD, Wiegand TW, Krebs MP, Reznikoff WS. Characterization of the Tn5 transposase and inhibitor proteins: a model for the inhibition of transposition. J Bacteriol. 1993 Nov;175(21):6932-8. PMID:8226636
- ↑ York D, Reznikoff WS. Purification and biochemical analyses of a monomeric form of Tn5 transposase. Nucleic Acids Res. 1996 Oct 1;24(19):3790-6. PMID:8871560
- ↑ Naumann TA, Reznikoff WS. Tn5 transposase active site mutants. J Biol Chem. 2002 May 17;277(20):17623-9. Epub 2002 Mar 4. PMID:11877443 doi:10.1074/jbc.M200742200
- ↑ Steiniger-White M, Bhasin A, Lovell S, Rayment I, Reznikoff WS. Evidence for "unseen" transposase--DNA contacts. J Mol Biol. 2002 Oct 4;322(5):971-82. PMID:12367522
- ↑ Steiniger-White M, Rayment I, Reznikoff WS. Structure/function insights into Tn5 transposition. Curr Opin Struct Biol. 2004 Feb;14(1):50-7. PMID:15102449 doi:http://dx.doi.org/10.1016/j.sbi.2004.01.008
|