|
|
Line 3: |
Line 3: |
| <StructureSection load='1n1v' size='340' side='right'caption='[[1n1v]], [[Resolution|resolution]] 2.10Å' scene=''> | | <StructureSection load='1n1v' size='340' side='right'caption='[[1n1v]], [[Resolution|resolution]] 2.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1n1v]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Tryra Tryra]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N1V OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1N1V FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1n1v]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Tryra Tryra]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1N1V OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1N1V FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=DAN:2-DEOXY-2,3-DEHYDRO-N-ACETYL-NEURAMINIC+ACID'>DAN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DAN:2-DEOXY-2,3-DEHYDRO-N-ACETYL-NEURAMINIC+ACID'>DAN</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1mz6|1mz6]], [[1mz5|1mz5]], [[1n1s|1n1s]], [[1n1t|1n1t]], [[1n1y|1n1y]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1mz6|1mz6]], [[1mz5|1mz5]], [[1n1s|1n1s]], [[1n1t|1n1t]], [[1n1y|1n1y]]</div></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Exo-alpha-sialidase Exo-alpha-sialidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.18 3.2.1.18] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Exo-alpha-sialidase Exo-alpha-sialidase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.18 3.2.1.18] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1n1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n1v OCA], [http://pdbe.org/1n1v PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1n1v RCSB], [http://www.ebi.ac.uk/pdbsum/1n1v PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1n1v ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1n1v FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1n1v OCA], [https://pdbe.org/1n1v PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1n1v RCSB], [https://www.ebi.ac.uk/pdbsum/1n1v PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1n1v ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
Line 28: |
Line 28: |
| </div> | | </div> |
| <div class="pdbe-citations 1n1v" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 1n1v" style="background-color:#fffaf0;"></div> |
- | | |
- | ==See Also== | |
- | *[[Sialidase|Sialidase]] | |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The structure of the recombinant Trypanosoma rangeli sialidase (TrSA) has been determined at 1.6A resolution, and the structures of its complexes with the transition state analog inhibitor 2-deoxy-2,3-dehydro-N-acetyl-neuraminic acid (DANA), Neu-5-Ac-thio-alpha(2,3)-galactoside (NATG) and N-acetylneuraminic acid (NANA) have been determined at 1.64A, 2.1A and 2.85A, respectively. The 3D structure of TrSA is essentially identical to that of the natural enzyme, except for the absence of covalently attached sugar at five distinct N-glycosylation sites. The protein exhibits a topologically rigid active site architecture that is unaffected by ligand binding. The overall binding of DANA to the active site cleft is similar to that observed for other viral and bacterial sialidases, dominated by the interactions of the inhibitor carboxylate with the conserved arginine triad. However, the interactions of the other pyranoside ring substituents (hydroxyl, N-acetyl and glycerol moieties) differ between trypanosomal, bacterial and viral sialidases, providing a structural basis for specific inhibitor design. Sialic acid is found to bind the enzyme with the sugar ring in a distorted (half-chair or boat) conformation and the 2-OH hydroxyl group at hydrogen bonding distance of the carboxylate of Asp60, substantiating a direct catalytic role for this residue. A detailed comparison of TrSA with the closely related structure of T.cruzi trans-sialidase (TcTS) reveals a highly conserved catalytic center, where subtle structural differences account for strikingly different enzymatic activities and inhibition properties. The structure of TrSA in complex with NATG shows the active site cleft occupied by a smaller compound which could be identified as DANA, probably the product of a hydrolytic side reaction. Indeed, TrSA (but not TcTS) was found to cleave O and S-linked sialylated substrates, further stressing the functional differences between trypanosomal sialidases and trans-sialidases.
The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase.,Amaya MF, Buschiazzo A, Nguyen T, Alzari PM J Mol Biol. 2003 Jan 24;325(4):773-84. PMID:12507479[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Amaya MF, Buschiazzo A, Nguyen T, Alzari PM. The high resolution structures of free and inhibitor-bound Trypanosoma rangeli sialidase and its comparison with T. cruzi trans-sialidase. J Mol Biol. 2003 Jan 24;325(4):773-84. PMID:12507479
|