|
|
Line 3: |
Line 3: |
| <StructureSection load='1pl2' size='340' side='right'caption='[[1pl2]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='1pl2' size='340' side='right'caption='[[1pl2]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1pl2]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PL2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1PL2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1pl2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1PL2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1PL2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ABY:N-(4-AMINOBUTANOYL)-S-(4-METHOXYBENZYL)-L-CYSTEINYLGLYCINE'>ABY</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ABY:N-(4-AMINOBUTANOYL)-S-(4-METHOXYBENZYL)-L-CYSTEINYLGLYCINE'>ABY</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CSO:S-HYDROXYCYSTEINE'>CSO</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1pkw|1pkw]], [[1pkz|1pkz]], [[1pl1|1pl1]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1pkw|1pkw]], [[1pkz|1pkz]], [[1pl1|1pl1]]</div></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1pl2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pl2 OCA], [http://pdbe.org/1pl2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1pl2 RCSB], [http://www.ebi.ac.uk/pdbsum/1pl2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1pl2 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1pl2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1pl2 OCA], [https://pdbe.org/1pl2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1pl2 RCSB], [https://www.ebi.ac.uk/pdbsum/1pl2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1pl2 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GSTA1_HUMAN GSTA1_HUMAN]] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.<ref>PMID:20606271</ref> | + | [[https://www.uniprot.org/uniprot/GSTA1_HUMAN GSTA1_HUMAN]] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.<ref>PMID:20606271</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[GSTA1_HUMAN] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Human glutathione transferase A1-1 is a well studied enzyme, but despite a wealth of structural and biochemical data a number of aspects of its catalytic function are still poorly understood. Here, five new crystal structures of this enzyme are described that provide several insights. Firstly, the structure of a complex of the wild-type human enzyme with glutathione was determined for the first time at 2.0 angstroms resolution. This reveals that glutathione binds in the G site in a very similar fashion as the glutathione portion of substrate analogues in other structures and also that glutathione binding alone is sufficient to stabilize the C-terminal helix of the protein. Secondly, we have studied the complex with a decarboxylated glutathione conjugate that is known to dramatically decrease the activity of the enzyme. The T68E mutant of human glutathione transferase A1-1 recovers some of the activity that is lost with the decarboxylated glutathione, but our structures of this mutant show that none of the earlier explanations of this phenomenon are likely to be correct. Thirdly, and serendipitously, the apo structures also reveal the conformation of the crucial C-terminal region that is disordered in all previous apo structures. The C-terminal region can adopt an ordered helix-like structure even in the apo state, but shows a strong tendency to unwind. Different conformations of the C-terminal regions were observed in the apo states of the two monomers, which suggests that cooperativity could play a role in the activity of the enzyme.
New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix.,Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt GJ Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):197-207. Epub 2006, Jan 18. PMID:16421451[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Achilonu I, Gildenhuys S, Fisher L, Burke J, Fanucchi S, Sewell BT, Fernandes M, Dirr HW. The role of a topologically conserved isoleucine in glutathione transferase structure, stability and function. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Jul 1;66(Pt, 7):776-80. Epub 2010 Jun 23. PMID:20606271 doi:10.1107/S1744309110019135
- ↑ Grahn E, Novotny M, Jakobsson E, Gustafsson A, Grehn L, Olin B, Madsen D, Wahlberg M, Mannervik B, Kleywegt GJ. New crystal structures of human glutathione transferase A1-1 shed light on glutathione binding and the conformation of the C-terminal helix. Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):197-207. Epub 2006, Jan 18. PMID:16421451 doi:10.1107/S0907444905039296
|