|
|
Line 3: |
Line 3: |
| <StructureSection load='1a39' size='340' side='right'caption='[[1a39]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='1a39' size='340' side='right'caption='[[1a39]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1a39]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_16454 Atcc 16454]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A39 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1A39 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1a39]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_16454 Atcc 16454]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1A39 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1A39 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PCA:PYROGLUTAMIC+ACID'>PCA</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POTENTIAL ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=34413 ATCC 16454])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">POTENTIAL ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=34413 ATCC 16454])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Cellulase Cellulase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.4 3.2.1.4] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1a39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a39 OCA], [http://pdbe.org/1a39 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1a39 RCSB], [http://www.ebi.ac.uk/pdbsum/1a39 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1a39 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1a39 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1a39 OCA], [https://pdbe.org/1a39 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1a39 RCSB], [https://www.ebi.ac.uk/pdbsum/1a39 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1a39 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GUN1_HUMIN GUN1_HUMIN]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. | + | [[https://www.uniprot.org/uniprot/GUN1_HUMIN GUN1_HUMIN]] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[GUN1_HUMIN] The biological conversion of cellulose to glucose generally requires three types of hydrolytic enzymes: (1) Endoglucanases which cut internal beta-1,4-glucosidic bonds; (2) Exocellobiohydrolases that cut the dissaccharide cellobiose from the non-reducing end of the cellulose polymer chain; (3) Beta-1,4-glucosidases which hydrolyze the cellobiose and other short cello-oligosaccharides to glucose.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Family 7 of the glycosyl hydrolases contains both endoglucanases and cellobiohydrolases. In addition to their different catalytic activities on crystalline substrates, the cellobiohydrolases differ from the endoglucanases in their activity on longer soluble substrates, indicative of a greater number of subsites on the enzyme. A double mutant (S37W, P39W) of the Humicola insolens endoglucanase I (EG I) has been constructed in order to mimic aspects of the subsite structure of the corresponding family 7 cellobiohydrolase, cellobiohydrolase-I (CBH I). The 3-D crystal structure of the double mutant has been solved and refined to a crystallographic R-factor of 0.17 at a resolution of 2.2 A (1 A = 0.1 nm). The two mutant tryptophans are clearly visible in the electron density and are in the same orientation as those found in the substrate binding groove of CBH I. In addition to the substitutions, the C-terminal amino acids (399QELQ), disordered in the native enzyme structure, are clearly visible and there are a small number of minor loop movements associated with differences in crystal packing. Kinetic determinations show that the S37W, P39W mutant EG I has almost identical activity, compared to native EG I, on small soluble cellodextrins. On phosphoric acid swollen cellulose there is a small (30%), but significant, decrease in the apparent KM indicating that the double mutant may indeed exhibit stronger binding to longer polymeric substrates.
Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites.,Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schulein M J Biotechnol. 1997 Sep 16;57(1-3):91-100. PMID:9335168[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schulein M. Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. J Biotechnol. 1997 Sep 16;57(1-3):91-100. PMID:9335168
|