|
|
Line 3: |
Line 3: |
| <StructureSection load='2dxn' size='340' side='right'caption='[[2dxn]], [[Resolution|resolution]] 2.92Å' scene=''> | | <StructureSection load='2dxn' size='340' side='right'caption='[[2dxn]], [[Resolution|resolution]] 2.92Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2dxn]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"aerobacter_aerogenes"_hormaeche_and_edwards_1958 "aerobacter aerogenes" hormaeche and edwards 1958]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DXN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2DXN FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2dxn]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"aerobacter_aerogenes"_hormaeche_and_edwards_1958 "aerobacter aerogenes" hormaeche and edwards 1958]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2DXN OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2DXN FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2dxl|2dxl]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2dxl|2dxl]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GpdQ ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=548 "Aerobacter aerogenes" Hormaeche and Edwards 1958])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GpdQ ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=548 "Aerobacter aerogenes" Hormaeche and Edwards 1958])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glycerophosphodiester_phosphodiesterase Glycerophosphodiester phosphodiesterase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.4.46 3.1.4.46] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glycerophosphodiester_phosphodiesterase Glycerophosphodiester phosphodiesterase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.4.46 3.1.4.46] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2dxn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2dxn OCA], [http://pdbe.org/2dxn PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2dxn RCSB], [http://www.ebi.ac.uk/pdbsum/2dxn PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2dxn ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2dxn FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2dxn OCA], [https://pdbe.org/2dxn PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2dxn RCSB], [https://www.ebi.ac.uk/pdbsum/2dxn PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2dxn ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/Q6XBH1_ENTAE Q6XBH1_ENTAE]] Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes.[HAMAP-Rule:MF_00905] | + | [[https://www.uniprot.org/uniprot/Q6XBH1_ENTAE Q6XBH1_ENTAE]] Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes.[HAMAP-Rule:MF_00905] |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[Q6XBH1_ENTAE] Hydrolyzes cAMP to 5'-AMP. Plays an important regulatory role in modulating the intracellular concentration of cAMP, thereby influencing cAMP-dependent processes.[HAMAP-Rule:MF_00905]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The structure of the glycerophosphodiesterase (GDPD) from Enterobacter aerogenes, GpdQ, has been solved by SAD phasing from the active site metal ions. Structural analysis indicates that GpdQ belongs to the alpha/beta sandwich metallo-phosphoesterase family, rather than the (alpha/beta)(8) barrel GDPD family, suggesting that GpdQ is a structurally novel GDPD. Hexameric GpdQ is generated by interactions between three dimers. The dimers are formed through domain swapping, stabilised by an inter-chain disulfide bond, and beta-sheet extension. The active site contains a binuclear metal centre, with a fully occupied alpha-metal ion site, and partially occupied beta-metal ion site, as revealed by anomalous scattering analysis. Using a combination of TLS refinement and normal mode analysis, the dynamic movement of GpdQ was investigated. This analysis suggests that the hexameric quaternary structure stabilises the base of the dimer, which promotes "breathing" of the active site cleft. Comparison with other metallo-phosphodiesterases shows that although the central, catalytic, domain is highly conserved, many of these enzymes possess structurally unrelated secondary domains located at the entrance of the active site. We suggest that this could be a common structural feature of metallo-phosphodiesterases that constrains substrate specificity, preventing non-specific phosphodiester hydrolysis.
The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes.,Jackson CJ, Carr PD, Liu JW, Watt SJ, Beck JL, Ollis DL J Mol Biol. 2007 Apr 6;367(4):1047-62. Epub 2007 Jan 20. PMID:17306828[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Jackson CJ, Carr PD, Liu JW, Watt SJ, Beck JL, Ollis DL. The structure and function of a novel glycerophosphodiesterase from Enterobacter aerogenes. J Mol Biol. 2007 Apr 6;367(4):1047-62. Epub 2007 Jan 20. PMID:17306828 doi:10.1016/j.jmb.2007.01.032
|