Sandbox Reserved 1687

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
==RNA Classification==
==RNA Classification==
-
Ebola is part of the Filoviridae family of single-stranded negative-sense RNA viruses of approximately 19 kb.<ref>PMID:31567063</ref> The 19 kb RNA encodes for “glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30, 40) and the RNA-dependent RNA polymerase”.<ref>PMID:31806422</ref> In EBOV, the RNA dependent RNA polymerase in conjunction with NP, VP30, and VP35 form the RNP complex in viral genome transcription and replication.<ref>PMID:31806422</ref> RDRP binds to the 3’ leader promoter and changes EBOV’s negative-sense RNA into positive-sense messenger RNA to produce Ebola proteins that produce new viral particles (virions).<ref>PMID:31806422</ref>
+
Ebola is part of the Filoviridae family of single-stranded negative-sense RNA viruses of approximately 19 kb.<ref>PMID:31567063</ref> The 19 kb RNA encodes for “glycoproteins (i.e., GP, sGP, ssGP), nucleoproteins, virion proteins (i.e., VP 24, 30, 40) and the RNA-dependent RNA polymerase”.<ref>PMID:31806422</ref> In EBOV, the RNA-dependent RNA polymerase in conjunction with NP, VP30, and VP35 form the RNP complex in viral genome transcription and replication.<ref>PMID:31806422</ref> RdRp binds to the 3’ leader promoter and changes EBOV’s negative-sense RNA into positive-sense messenger RNA to produce Ebola proteins that produce new viral particles (virions).<ref>PMID:31806422</ref>
==Function of RNA-Dependent RNA Polymerase==
==Function of RNA-Dependent RNA Polymerase==
Line 19: Line 19:
==Structural Features of Ebola Virus RNA-Dependent RNA Polymerase[https://swissmodel.expasy.org/interactive/7EhwKr/]==
==Structural Features of Ebola Virus RNA-Dependent RNA Polymerase[https://swissmodel.expasy.org/interactive/7EhwKr/]==
-
EBOV has a monomeric RNA-dependent RNA polymerase and as such, shares the characteristic <scene name='89/891377/Rh_shape/4'>right hand shape</scene> of other monomeric RdRp composed of the fingertips, palm, and thumb subdomains. <ref>PMID:26397100</ref> The predicted 3D structure described here was produced by running one Zaire Ebola virus L protein sequence (Sierra Leona, Makona-G3686.1; AIE11922) on the homology modeling program, SwissModel. [https://swissmodel.expasy.org/interactive/7EhwKr/] The <scene name='89/891377/Fingertips_subdomain_2/9'>fingertips subdomain</scene> is composed of residues 417-439 and 489-563, the <scene name='89/891377/Palm_subdomain_1/7'>palm subdomain</scene> is composed of residues 440-488 and 563-666, and the <scene name='89/891377/Thumb_subdomain/4'>thumb subdomain</scene> is made up of residues 667-704.<ref>PMID:26397100</ref> The highly conserved motifs A-F were identified in the palm subdomain of the EBOV RdRp, but motifs G and H, which are not part of the active site, were not identified.<ref>PMID:26397100</ref> The predicted <scene name='89/891377/Motif_a/1'>motif A</scene> is composed of a β-strand followed by a loop 10 amino acids long. It is in motif A that you find the highly conserved and catalytic aspartic acid residue found among other RdRp. Motif B is composed of a loop followed by a long α-helix. Residues 564-568 found in motif B may be involved in interacting with the incoming nucleotide and the template RNA. Motif C possesses the structure β-strand-loop-β-strand and has an Aspartate residue that matches the conserved and catalytic Asp593. The aspartate and asparagine in this model interact with the metal ions and complete the nucleotidyl transfer reaction. Motif D is formed by an α-helix and a long loop. Motif D contains two conserved amino acids of importance. Lysine 639 and glutamic acid 642 are both conserved in the Mononegavirales order, and depronate the pyrophosphate leaving group and interact with the incoming nucleotide, respectively. Additionally, motif D serves as a structural scaffold for the palm subdomain. Motif E has the characteristic β-hairpin structure and is in charge of positioning the 3' OH end of the primer.
+
EBOV has a monomeric RNA-dependent RNA polymerase and as such, shares the characteristic <scene name='89/891377/Rh_shape/4'>right hand shape</scene> of other monomeric RdRp composed of the fingertips, palm, and thumb subdomains. <ref>PMID:26397100</ref> The predicted 3D structure described here was produced by running one Zaire Ebola virus L protein sequence (Sierra Leona, Makona-G3686.1; AIE11922) on the homology modeling program, SwissModel. [https://swissmodel.expasy.org/interactive/7EhwKr/] The <scene name='89/891377/Fingertips_subdomain_2/9'>fingertips subdomain</scene> is composed of residues 417-439 and 489-563, the <scene name='89/891377/Palm_subdomain_1/7'>palm subdomain</scene> is composed of residues 440-488 and 563-666, and the <scene name='89/891377/Thumb_subdomain/4'>thumb subdomain</scene> is made up of residues 667-704.<ref>PMID:26397100</ref> The highly conserved motifs A-F were identified in the palm subdomain of the EBOV RdRp, but motifs G and H, which are not part of the active site, were not identified.<ref>PMID:26397100</ref> The predicted <scene name='89/891377/Motif_a/1'>motif A</scene> is composed of a β-strand followed by a loop 10 amino acids long. It is in motif A that you find the highly conserved residue 624 that is one of two catalytic aspartic acid residues (the other being residue 734 in motif C).<ref>PMID:26397100</ref> Motif B is composed of a loop followed by a long α-helix. Residues 564-568 found in motif B may be involved in interacting with the incoming nucleotide and the template RNA. Motif C possesses the structure β-strand-loop-β-strand and has an aspartate residue that matches the conserved and catalytic Asp593 found in other RdRp in the Mononegavirales order. The aspartate residues in this model interact with metal ions, coordinating their position, and the residues are also involved in completing the nucleotidyl transfer reaction. Motif D is formed by an α-helix and a long loop. Motif D contains two conserved amino acids of importance. Lysine 639 and glutamic acid 642 are both conserved in the Mononegavirales order, and depronate the pyrophosphate leaving group and interact with the incoming nucleotide, respectively. Additionally, motif D serves as a structural scaffold for the palm subdomain as it is composed predominantly of hydrophobic residues.<ref>PMID:26397100</ref> Motif E has the characteristic β-hairpin structure and is in charge of positioning the 3' OH end of the primer during transcription.
</StructureSection>
</StructureSection>
== References ==
== References ==
<references/>
<references/>

Revision as of 02:11, 27 October 2021

Ebola Virus RNA-Dependent RNA Polymerase

Ebola Virus RNA-Dependent RNA Polymerase

Drag the structure with the mouse to rotate

References

  1. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  2. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  3. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  4. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  5. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  6. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  7. Malvy D, McElroy AK, de Clerck H, Gunther S, van Griensven J. Ebola virus disease. Lancet. 2019 Mar 2;393(10174):936-948. doi: 10.1016/S0140-6736(18)33132-5. Epub, 2019 Feb 15. PMID:30777297 doi:http://dx.doi.org/10.1016/S0140-6736(18)33132-5
  8. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  9. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  10. Furuyama W, Marzi A. Ebola Virus: Pathogenesis and Countermeasure Development. Annu Rev Virol. 2019 Sep 29;6(1):435-458. doi:, 10.1146/annurev-virology-092818-015708. PMID:31567063 doi:http://dx.doi.org/10.1146/annurev-virology-092818-015708
  11. Rojas M, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramirez-Santana C, Ansari AA, Gershwin ME, Anaya JM. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun. 2020 Jan;106:102375. doi: 10.1016/j.jaut.2019.102375. Epub 2019 Dec , 3. PMID:31806422 doi:http://dx.doi.org/10.1016/j.jaut.2019.102375
  12. Rojas M, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramirez-Santana C, Ansari AA, Gershwin ME, Anaya JM. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun. 2020 Jan;106:102375. doi: 10.1016/j.jaut.2019.102375. Epub 2019 Dec , 3. PMID:31806422 doi:http://dx.doi.org/10.1016/j.jaut.2019.102375
  13. Rojas M, Monsalve DM, Pacheco Y, Acosta-Ampudia Y, Ramirez-Santana C, Ansari AA, Gershwin ME, Anaya JM. Ebola virus disease: An emerging and re-emerging viral threat. J Autoimmun. 2020 Jan;106:102375. doi: 10.1016/j.jaut.2019.102375. Epub 2019 Dec , 3. PMID:31806422 doi:http://dx.doi.org/10.1016/j.jaut.2019.102375
  14. Tchesnokov EP, Raeisimakiani P, Ngure M, Marchant D, Gotte M. Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep. 2018 Mar 5;8(1):3970. doi: 10.1038/s41598-018-22328-3. PMID:29507309 doi:http://dx.doi.org/10.1038/s41598-018-22328-3
  15. Tchesnokov EP, Raeisimakiani P, Ngure M, Marchant D, Gotte M. Recombinant RNA-Dependent RNA Polymerase Complex of Ebola Virus. Sci Rep. 2018 Mar 5;8(1):3970. doi: 10.1038/s41598-018-22328-3. PMID:29507309 doi:http://dx.doi.org/10.1038/s41598-018-22328-3
  16. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
  17. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
  18. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
  19. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
  20. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
  21. Jacome R, Becerra A, Ponce de Leon S, Lazcano A. Structural Analysis of Monomeric RNA-Dependent Polymerases: Evolutionary and Therapeutic Implications. PLoS One. 2015 Sep 23;10(9):e0139001. doi: 10.1371/journal.pone.0139001., eCollection 2015. PMID:26397100 doi:http://dx.doi.org/10.1371/journal.pone.0139001
Personal tools