|
|
Line 3: |
Line 3: |
| <StructureSection load='1jkd' size='340' side='right'caption='[[1jkd]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='1jkd' size='340' side='right'caption='[[1jkd]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1jkd]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JKD OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1JKD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1jkd]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JKD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1JKD FirstGlance]. <br> |
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=NO3:NITRATE+ION'>NO3</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">A SYNTHETIC GENE OF HUMAN LYSO ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">A SYNTHETIC GENE OF HUMAN LYSO ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1jkd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jkd OCA], [http://pdbe.org/1jkd PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1jkd RCSB], [http://www.ebi.ac.uk/pdbsum/1jkd PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1jkd ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1jkd FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jkd OCA], [https://pdbe.org/1jkd PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1jkd RCSB], [https://www.ebi.ac.uk/pdbsum/1jkd PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1jkd ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[http://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> | + | [[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:[https://omim.org/entry/105200 105200]]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.<ref>PMID:8464497</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. | + | [[https://www.uniprot.org/uniprot/LYSC_HUMAN LYSC_HUMAN]] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Disease
[LYSC_HUMAN] Defects in LYZ are a cause of amyloidosis type 8 (AMYL8) [MIM:105200]; also known as systemic non-neuropathic amyloidosis or Ostertag-type amyloidosis. AMYL8 is a hereditary generalized amyloidosis due to deposition of apolipoprotein A1, fibrinogen and lysozyme amyloids. Viscera are particularly affected. There is no involvement of the nervous system. Clinical features include renal amyloidosis resulting in nephrotic syndrome, arterial hypertension, hepatosplenomegaly, cholestasis, petechial skin rash.[1]
Function
[LYSC_HUMAN] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The importance of van der Waals contact between Glu 35 and Trp 109 to the active-site structure and the catalytic properties of human lysozyme (HL) has been investigated by site-directed mutagenesis. The X-ray analysis of mutant HLs revealed that both the replacement of Glu 35 by Asp or Ala, and the replacement of Trp 109 by Phe or Ala resulted in a significant but localized change in the active-site cleft geometry. A prominent movement of the backbone structure was detected in the region of residues 110 to 120 and in the region of residues 100 to 115 for the mutations concerning Glu 35 and Trp 109, respectively. Accompanied by the displacement of the main-chain atoms with a maximal deviation of C alpha atom position ranging from 0.7 A to 1.0 A, the mutant HLs showed a remarkable change in the catalytic properties against Micrococcus luteus cell substrate as compared with native HL. Although the replacement of Glu 35 by Ala completely abolished the lytic activity, HL-Asp 35 mutant retained a weak but a certain lytic activity, showing the possible involvement of the side-chain carboxylate group of Asp 35 in the catalytic action. The kinetic consequence derived from the replacement of Trp 109 by Phe or Ala together with the result of the structural change suggested that the structural detail of the cleft lobe composed of the residues 100 to 115 centered at Ala 108 was responsible for the turnover in the reaction of HL against the bacterial cell wall substrate. The results revealed that the van der Waals contact between Glu 35 and Trp 109 was an essential determinant in the catalytic action of HL.
Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme.,Muraki M, Goda S, Nagahora H, Harata K Protein Sci. 1997 Feb;6(2):473-6. PMID:9041653[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Pepys MB, Hawkins PN, Booth DR, Vigushin DM, Tennent GA, Soutar AK, Totty N, Nguyen O, Blake CC, Terry CJ, et al.. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature. 1993 Apr 8;362(6420):553-7. PMID:8464497 doi:http://dx.doi.org/10.1038/362553a0
- ↑ Muraki M, Goda S, Nagahora H, Harata K. Importance of van der Waals contact between Glu 35 and Trp 109 to the catalytic action of human lysozyme. Protein Sci. 1997 Feb;6(2):473-6. PMID:9041653
|