|
|
Line 3: |
Line 3: |
| <StructureSection load='2jzb' size='340' side='right'caption='[[2jzb]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | | <StructureSection load='2jzb' size='340' side='right'caption='[[2jzb]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2jzb]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895] and [http://en.wikipedia.org/wiki/"bacillus_pseudotuberkulosis"_(sic)_pfeiffer_1889 "bacillus pseudotuberkulosis" (sic) pfeiffer 1889]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JZB OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2JZB FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2jzb]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895] and [https://en.wikipedia.org/wiki/"bacillus_pseudotuberkulosis"_(sic)_pfeiffer_1889 "bacillus pseudotuberkulosis" (sic) pfeiffer 1889]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JZB OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2JZB FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpoA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=633 "Bacillus pseudotuberkulosis" (sic) Pfeiffer 1889]), nusA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> | + | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpoA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=633 "Bacillus pseudotuberkulosis" (sic) Pfeiffer 1889]), nusA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jzb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jzb OCA], [http://pdbe.org/2jzb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2jzb RCSB], [http://www.ebi.ac.uk/pdbsum/2jzb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2jzb ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2jzb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jzb OCA], [https://pdbe.org/2jzb PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2jzb RCSB], [https://www.ebi.ac.uk/pdbsum/2jzb PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2jzb ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RPOA_ECOLI RPOA_ECOLI]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [[http://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI]] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> | + | [[https://www.uniprot.org/uniprot/RPOA_ECOLI RPOA_ECOLI]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [[https://www.uniprot.org/uniprot/NUSA_ECOLI NUSA_ECOLI]] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.<ref>PMID:6263495</ref> <ref>PMID:6265785</ref> <ref>PMID:6199039</ref> <ref>PMID:2821282</ref> <ref>PMID:7536848</ref> <ref>PMID:9139668</ref> <ref>PMID:11719185</ref> <ref>PMID:20696893</ref> <ref>PMID:21922055</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[RPOA_ECOLI] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [NUSA_ECOLI] Participates in both transcription termination and antitermination. Involved in a variety of cellular and viral termination and antitermination processes, such as Rho-dependent transcriptional termination, intrinsic termination, and phage lambda N-mediated transcriptional antitermination. Also important for coordinating the cellular responses to DNA damage by coupling the processes of nucleotide excision repair and translesion synthesis to transcription.[1] [2] [3] [4] [5] [6] [7] [8] [9]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
See Also
References
- ↑ Greenblatt J, Li J. Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription. Cell. 1981 May;24(2):421-8. PMID:6263495
- ↑ Greenblatt J, McLimont M, Hanly S. Termination of transcription by nusA gene protein of Escherichia coli. Nature. 1981 Jul 16;292(5820):215-20. PMID:6265785
- ↑ Schmidt MC, Chamberlin MJ. Amplification and isolation of Escherichia coli nusA protein and studies of its effects on in vitro RNA chain elongation. Biochemistry. 1984 Jan 17;23(2):197-203. PMID:6199039
- ↑ Schmidt MC, Chamberlin MJ. nusA protein of Escherichia coli is an efficient transcription termination factor for certain terminator sites. J Mol Biol. 1987 Jun 20;195(4):809-18. PMID:2821282 doi:http://dx.doi.org/10.1016/0022-2836(87)90486-4
- ↑ Liu K, Hanna MM. NusA contacts nascent RNA in Escherichia coli transcription complexes. J Mol Biol. 1995 Apr 7;247(4):547-58. PMID:7536848 doi:http://dx.doi.org/10.1006/jmbi.1994.0161
- ↑ Vogel U, Jensen KF. NusA is required for ribosomal antitermination and for modulation of the transcription elongation rate of both antiterminated RNA and mRNA. J Biol Chem. 1997 May 9;272(19):12265-71. PMID:9139668
- ↑ Gusarov I, Nudler E. Control of intrinsic transcription termination by N and NusA: the basic mechanisms. Cell. 2001 Nov 16;107(4):437-49. PMID:11719185
- ↑ Cohen SE, Lewis CA, Mooney RA, Kohanski MA, Collins JJ, Landick R, Walker GC. Roles for the transcription elongation factor NusA in both DNA repair and damage tolerance pathways in Escherichia coli. Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15517-22. doi:, 10.1073/pnas.1005203107. Epub 2010 Aug 9. PMID:20696893 doi:http://dx.doi.org/10.1073/pnas.1005203107
- ↑ Burmann BM, Rosch P. The role of E. coli Nus-factors in transcription regulation and transcription:translation coupling: From structure to mechanism. Transcription. 2011 May;2(3):130-134. PMID:21922055 doi:http://dx.doi.org/10.4161/trns.2.3.15671
|