2k3j
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='2k3j' size='340' side='right'caption='[[2k3j]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | <StructureSection load='2k3j' size='340' side='right'caption='[[2k3j]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[2k3j]] is a 1 chain structure with sequence from [ | + | <table><tr><td colspan='2'>[[2k3j]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2K3J OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2K3J FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CHCHD4, MIA40 ([ | + | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CHCHD4, MIA40 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[ | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2k3j FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2k3j OCA], [https://pdbe.org/2k3j PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2k3j RCSB], [https://www.ebi.ac.uk/pdbsum/2k3j PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2k3j ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == | ||
- | [[ | + | [[https://www.uniprot.org/uniprot/MIA40_HUMAN MIA40_HUMAN]] Functions as chaperone and catalyzes the formation of disulfide bonds in substrate proteins, such as COX17. Required for the import and folding of small cysteine-containing proteins (small Tim) in the mitochondrial intermembrane space (IMS). Precursor proteins to be imported into the IMS are translocated in their reduced form into the mitochondria. The oxidized form of CHCHD4/MIA40 forms a transient intermolecular disulfide bridge with the reduced precursor protein, resulting in oxidation of the precursor protein that now contains an intramolecular disulfide bond and is able to undergo folding in the IMS. Reduced CHCHD4/MIA40 is then reoxidized by GFER/ERV1 via a disulfide relay system.<ref>PMID:16185709</ref> <ref>PMID:23186364</ref> <ref>PMID:19182799</ref> <ref>PMID:21059946</ref> |
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
[[Image:Consurf_key_small.gif|200px|right]] | [[Image:Consurf_key_small.gif|200px|right]] |
Revision as of 13:28, 24 November 2021
The solution structure of human Mia40
|
Categories: Human | Large Structures | Baffoni, S Ciofi | Bertini, I | Gallo, A | Alpha-hairpin fold | Alternative splicing | Coiled coil-helix-coiled coil-helix domain | Mitochondrial oxidase | Mitochondrion | Oxidoreductase | Protein import and folding | Protein transport | Translocation | Transport