Enkephalin

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
Volume 16, Issue 12,1975,Pages 1753-1758,ISSN 0024-3205,https://doi.org/10.1016/0024-3205(75)90268-4.</ref> <ref>Hans W. Kosterlitz, John Hughes,
Volume 16, Issue 12,1975,Pages 1753-1758,ISSN 0024-3205,https://doi.org/10.1016/0024-3205(75)90268-4.</ref> <ref>Hans W. Kosterlitz, John Hughes,
Some thoughts on the significance of enkephalin, the endogenous ligand, Life Sciences, Volume 17, Issue 1, 1975, Pages 91-96, ISSN 0024-3205, https://doi.org/10.1016/0024-3205(75)90243-X.</ref>. They are pentapeptides that can be divided into two groups based on their carboxy-terminal amino acids: '''methionine-enkephalin''' and '''leucine-enkephalin'''.
Some thoughts on the significance of enkephalin, the endogenous ligand, Life Sciences, Volume 17, Issue 1, 1975, Pages 91-96, ISSN 0024-3205, https://doi.org/10.1016/0024-3205(75)90243-X.</ref>. They are pentapeptides that can be divided into two groups based on their carboxy-terminal amino acids: '''methionine-enkephalin''' and '''leucine-enkephalin'''.
-
Enkephalin acts as a neurotransmitter through opioid receptors, more specifically through the <scene name='89/897677/Leu-enkephalin_bind/1'>classical opioid receptor δ</scene> <ref name="cullen">Cullen JM, Cascella M. Physiology, Enkephalin. [Updated 2021 Mar 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557764/ </ref>. The main functions of enkephalins include analgesia, but they are also involved in the control of respiratory, cardiovascular and gastrointestinal functions, and participate in neuroendocrine regulation <ref>Marcotte, I., Separovic, F., Auger, M., & Gagné, S. M. (2004). A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles. Biophysical journal, 86(3), 1587–1600. https://doi.org/10.1016/S0006-3495(04)74226-5</ref> <ref>Cesselin, F. 1997. Endomorphines, Récepteurs des Opioïdes et Nociception. In Douleurs: Bases Fondamentales, Pharmacologie, Douleurs Aiguës, Douleurs Chroniques, Thérapeutiques. L. Brasseur, M. Chauvin, G. Guilbaud, and P. Guesnon, editors. Maloine, Paris, France.</ref> <ref>Fuxe, K., Borroto-Escuela, D. O., Romero-Fernandez, W., Diaz-Cabiale, Z., Rivera, A., Ferraro, L., Tanganelli, S., Tarakanov, A. O., Garriga, P., Narváez, J. A., Ciruela, F., Guescini, M., & Agnati, L. F. (2012). Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Frontiers in physiology, 3, 136. https://doi.org/10.3389/fphys.2012.00136</ref>.
+
Enkephalin acts as a neurotransmitter through opioid receptors, more specifically through the <scene name='89/897677/Leu-enkephalin_bind/1'>classical opioid receptor δ</scene> <ref name="cullen">Cullen JM, Cascella M. Physiology, Enkephalin. [Updated 2021 Mar 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557764/ </ref>. The main functions of enkephalins include analgesia, but they are also involved in the control of respiratory, cardiovascular and gastrointestinal functions, and participate in neuroendocrine regulation <ref name="marcotte">Marcotte, I., Separovic, F., Auger, M., & Gagné, S. M. (2004). A multidimensional 1H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling bicelles. Biophysical journal, 86(3), 1587–1600. https://doi.org/10.1016/S0006-3495(04)74226-5</ref> <ref>Cesselin, F. 1997. Endomorphines, Récepteurs des Opioïdes et Nociception. In Douleurs: Bases Fondamentales, Pharmacologie, Douleurs Aiguës, Douleurs Chroniques, Thérapeutiques. L. Brasseur, M. Chauvin, G. Guilbaud, and P. Guesnon, editors. Maloine, Paris, France.</ref> <ref>Fuxe, K., Borroto-Escuela, D. O., Romero-Fernandez, W., Diaz-Cabiale, Z., Rivera, A., Ferraro, L., Tanganelli, S., Tarakanov, A. O., Garriga, P., Narváez, J. A., Ciruela, F., Guescini, M., & Agnati, L. F. (2012). Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks. Frontiers in physiology, 3, 136. https://doi.org/10.3389/fphys.2012.00136</ref>.
Enkephalin is generated from the cleavage of the precursor '''pro-enkephalin''', resulting in Met-enkephalin or Leu-enkephalin. The processing of one molecule of pro-enkephalin generates six copies of <scene name='89/897677/Met-enkephalin/1'>Met-enkephalin</scene> and one copy of Leu-enkephalin <ref name="cullen"/>.
Enkephalin is generated from the cleavage of the precursor '''pro-enkephalin''', resulting in Met-enkephalin or Leu-enkephalin. The processing of one molecule of pro-enkephalin generates six copies of <scene name='89/897677/Met-enkephalin/1'>Met-enkephalin</scene> and one copy of Leu-enkephalin <ref name="cullen"/>.
Line 14: Line 14:
The main conformations of enkephalin found in crystals have been classified in three categories, described as “extended,” “single bend,” and “double bend.”<ref>Deschamps J. R., George C., Flippen-Anderson J. L. (1996). Structural studies of opioid peptides: a review of recent progress in x-ray diffraction studies. Biopolymers 40, 121–139. 10.1002/bip.360400102</ref>. The picture below represents molecular models of Leu-enkephalin in the three main conformations found in solid state determinations when the peptide is dissolved in a DMSO/water cryomixture at 275 K. <ref>Amodeo P., Naider F., Picone D., Tancredi T., Temussi P. A. (1998). Conformational sampling of bioactive conformers: a low temperature NMR study of 15N-Leu-enkephalin. J. Pept. Sci. 4, 253–265.</ref>.
The main conformations of enkephalin found in crystals have been classified in three categories, described as “extended,” “single bend,” and “double bend.”<ref>Deschamps J. R., George C., Flippen-Anderson J. L. (1996). Structural studies of opioid peptides: a review of recent progress in x-ray diffraction studies. Biopolymers 40, 121–139. 10.1002/bip.360400102</ref>. The picture below represents molecular models of Leu-enkephalin in the three main conformations found in solid state determinations when the peptide is dissolved in a DMSO/water cryomixture at 275 K. <ref>Amodeo P., Naider F., Picone D., Tancredi T., Temussi P. A. (1998). Conformational sampling of bioactive conformers: a low temperature NMR study of 15N-Leu-enkephalin. J. Pept. Sci. 4, 253–265.</ref>.
[[Image:Leu-Enkephalin_conformations.jpg]]
[[Image:Leu-Enkephalin_conformations.jpg]]
 +
 +
Met-enkephalin amino acid sequence is Tyr-Gly-Gly-Phe-Met, while leu-enkephalin amino acid sequence is Tyr-Gly-Gly-Phe-Leu. As we can see, <scene name='89/897677/Tyr1_and_phe4/1'>tyrosine and phenylalanine rings</scene> of leu-enkephalin are on opposite sides of the backbone and point in different directions. A similar conformation was found for met-enkephalin in Bic/PG <ref name="marcotte"/>.
 +
 +
Variations in membrane composition seems to have an effect on the conformation adopted by enkephalins <ref name="marcotte"/>. There is common agreement that the orientation of the tyrosine and phenylalanine rings with respect to each other dictates the receptor subtype selectivity <ref name="marcotte"/>. It was originally believed that the ''μ''-selective opiates adopted a folded conformation whereas the δ-opiates preferred an extended form <ref name="marcotte"/> <ref>Hansen, P. E., and B. A. Morgan. 1984. Structure-activity relationships in enkephalin peptides. In Opioid Peptides: Biology, Chemistry, and Genetics, Vol. 6. S. Udenfriend and J. Meienhofer, editors. Academic Press, Orlando, FL.</ref>. However, later other studies suggested a folded conformation with the Tyr and Phe aromatic rings in proximity for the δ-selective opiates, whereas the aromatic rings would point in different directions in the ''μ''-type opiates <ref name="marcotte"/> <ref>Belleney, J., G. Gacel, M. C. Fournié-Zalusky, B. Maigret, and B. P. Roques. 1989. δ opioid receptor selectivity induced by conformational constraints in linear enkephalin-related peptides: 1H 400-MHz NMR study and theoretical calculations. Biochemistry. 28:7392–7400.</ref> <ref>Groth, M., J. Malicka, C. Czaplewski, S. Oldziej, L. Lankiewicz, W. Wiczk, and A. Liwo. 1999. Maximum entropy approach to the determination of solution conformation of flexible polypeptides by global conformational analysis and NMR spectroscopy: application to DNS1-c-[D-A2bu2, Trp4, Leu5]-enkephalin and DNS1-c-[D-A2bu2, Trp4, D-Leu5]enkephalin. J. Biomol. NMR. 15:315–330.</ref> <ref>Hruby, V. J., L.-F. Kao, B. M. Pettitt, and M. Karplus. 1988. The conformational properties of the δ-opioid peptide [D-Pen2,D-Pen5]enkephalin in aqueous solution determined by NMR and energy minimization calculations. J. Am. Chem. Soc. 110:3351–3359.</ref> <ref>Keys, C., P. Payne, P. Amsterdam, L. Toll, and G. Loew. 1988. Conformational determinants of high affinity δ receptor binding of opioid peptides. Mol. Pharmacol. 33:528–536.</ref> <ref>Kolp, B., F. Andreae, W. M. F. Fabian, and H. Sterk. 1996. Combined use of NMR, distance geometry and MD calculations for the conformational analysis of opioid peptides of the type [D(L)-Cys2, D(L)-Cys5]enkephalin. Int. J. Pept. Protein Res. 48:443–451.</ref> <ref>Lomize, A. L., I. D. Pogozheva, and H. I. Mosberg. 1996. Development of a model for the δ-opioid receptor pharmacophore. 3. Comparison of the cyclic tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]OH with other conformationally constrained δ-receptor selective ligands. Biopolymers. 38:221–234.</ref> <ref>Mosberg, H. I. 1999. Complementarity of δ opioid ligand pharmacophore and receptor models. Biopolymers. 51:426–439.</ref> <ref>Shenderovitch, M. D., G. V. Nikiforovich, and A. A. Golbraikh. 1991. Conformational features responsible for the binding of cyclic analogues of enkephalin to opioid receptors. Int. J. Pept. Protein Res. 37:241–251.</ref> <ref>Tourwé, D., K. Verschueren, A. Frycia, P. Davis, F. Porreca, V. J. Hruby, G. Toth, H. Jaspers, P. Verheyden, and G. Van Binst. 1995. Conformational restriction of Tyr and Phe side chains in opioid peptides: information about preferred and bioactive side-chain topology. Biopolymers. 38:1–12.</ref> <ref>Wang, Y., and K. Kuczera. 1996. Molecular dynamics simulations of cyclic and linear DPDPE: influence of the disulfide bond on peptide flexibility. J. Phys. Chem. 100:2555–2563.</ref> <ref>Yamazaki, T., S. Ro, M. Goodman, N. N. Chung, and P. W. Schiller. 1993. A topochemical approach to explain morphiceptin bioactivity. J. Med. Chem. 36:708–719.</ref>.
== Physiological functions ==
== Physiological functions ==

Revision as of 20:31, 29 November 2021

Structure of human DPP3 in complex with opioid peptide leu-enkephalin

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Borja Fernández García, Marina González Castilla, Michal Harel

Personal tools