Enkephalin

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 40: Line 40:
Met-Enkephalin (MENK) may contribute to immune responses against tumors and viral infections by activating multiple types of immune cells, enabling them to secrete various cytokines or directly kill target cells. The nuclear membrane of certain cancer cells expressed receptors to which MENK bound, resulting in marked growth inhibition of cancer cells in vitro<ref>Wang DM, Wang GC, Yang J, Plotnikoff NP, Griffin N, Han YM, Qi RQ, Gao XH and Shan FP: Inhibition of the growth of human melanoma cells by methionine enkephalin. Mol Med Rep 14: 5521-5527, 2016</ref>.
Met-Enkephalin (MENK) may contribute to immune responses against tumors and viral infections by activating multiple types of immune cells, enabling them to secrete various cytokines or directly kill target cells. The nuclear membrane of certain cancer cells expressed receptors to which MENK bound, resulting in marked growth inhibition of cancer cells in vitro<ref>Wang DM, Wang GC, Yang J, Plotnikoff NP, Griffin N, Han YM, Qi RQ, Gao XH and Shan FP: Inhibition of the growth of human melanoma cells by methionine enkephalin. Mol Med Rep 14: 5521-5527, 2016</ref>.
-
Activation of δ opioid receptors acts against oxidative stress in the central nervous system and promotes neuron survival. It is able to cross the blood-brain barrier; it has been hypothesized to be a promising strategy to promote neuron regeneration, especially in brain damage caused by stroke <ref>Liu, Y., Fu, N., Su, J., Wang, X., & Li, X. (2019). Rapid Enkephalin Delivery Using Exosomes to Promote Neurons Recovery in Ischemic Stroke by Inhibiting Neuronal p53/Caspase-3. BioMed research international, 2019, 4273290. https://doi.org/10.1155/2019/4273290</ref>.
+
Activation of δ opioid receptors acts against oxidative stress in the central nervous system and promotes neuron survival. It is able to cross the blood-brain barrier; it has been hypothesized to be a promising strategy to promote neuron regeneration, especially in brain damage caused by stroke <ref>Liu, Y., Fu, N., Su, J., Wang, X., & Li, X. (2019). Rapid Enkephalin Delivery Using Exosomes to Promote Neurons Recovery in Ischemic Stroke by Inhibiting Neuronal p53/Caspase-3. BioMed research international, 2019, 4273290. https://doi.org/10.1155/2019/4273290</ref>. Multifunctional fluorinated enkephalin analog, LYS739 can be considered as a potential lead for ischemic stroke research and may provide advantages given the multimeric peptide-opiate structure<ref>Rashedul Islam, M., Yang, L., Sun Lee, Y., J Hruby, V., T Karamyan, V., & J Abbruscato, T. (2016). Enkephalin-fentanyl multifunctional opioids as potential neuroprotectants for ischemic stroke treatment. Current pharmaceutical design, 22(42), 6459-6468.</ref>.
The main and most known effect of enkephalins is analgesia, which makes the therapeutic use of enkephalins to treat pain one their main clinical relevant aspect. However, enkephalins have a relatively low stability ''in-vivo'', due to their degradation by endogenous peptidases <ref name="cullen"/>. Two approaches have been proposed to this issue: the first one is the chemical modification of enkephalins while preserving their analgesic efficacy. One example of this is the design of D-Ala-methionine-enkephalin in 1976 by Pert et al. <ref>Pert, C. B., Pert, A., Chang, J. K., & Fong, B. T. (1976). (D-Ala2)-Met-enkephalinamide: a potent, long-lasting synthetic pentapeptide analgesic. Science (New York, N.Y.), 194(4262), 330–332. https://doi.org/10.1126/science.968485</ref>. Kropotova et al. in 2020 have designed different modified enkephalins that are less accessible to endopeptidases <ref>Kropotova, E. S., Ivleva, I. S., Karpenko, M. N., & Mosevitsky, M. I. (2020). Design of enkephalin modifications protected from brain extracellular peptidases providing long-term analgesia. Bioorganic & medicinal chemistry, 28(1), 115184. https://doi.org/10.1016/j.bmc.2019.115184</ref>.
The main and most known effect of enkephalins is analgesia, which makes the therapeutic use of enkephalins to treat pain one their main clinical relevant aspect. However, enkephalins have a relatively low stability ''in-vivo'', due to their degradation by endogenous peptidases <ref name="cullen"/>. Two approaches have been proposed to this issue: the first one is the chemical modification of enkephalins while preserving their analgesic efficacy. One example of this is the design of D-Ala-methionine-enkephalin in 1976 by Pert et al. <ref>Pert, C. B., Pert, A., Chang, J. K., & Fong, B. T. (1976). (D-Ala2)-Met-enkephalinamide: a potent, long-lasting synthetic pentapeptide analgesic. Science (New York, N.Y.), 194(4262), 330–332. https://doi.org/10.1126/science.968485</ref>. Kropotova et al. in 2020 have designed different modified enkephalins that are less accessible to endopeptidases <ref>Kropotova, E. S., Ivleva, I. S., Karpenko, M. N., & Mosevitsky, M. I. (2020). Design of enkephalin modifications protected from brain extracellular peptidases providing long-term analgesia. Bioorganic & medicinal chemistry, 28(1), 115184. https://doi.org/10.1016/j.bmc.2019.115184</ref>.

Revision as of 21:09, 29 November 2021

Structure of human DPP3 in complex with opioid peptide leu-enkephalin

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Borja Fernández García, Marina González Castilla, Michal Harel

Personal tools