|
|
Line 3: |
Line 3: |
| <StructureSection load='2kt3' size='340' side='right'caption='[[2kt3]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | | <StructureSection load='2kt3' size='340' side='right'caption='[[2kt3]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2kt3]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KT3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2KT3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2kt3]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"bacillus_aeruginosus"_(schroeter_1872)_trevisan_1885 "bacillus aeruginosus" (schroeter 1872) trevisan 1885]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KT3 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KT3 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HG:MERCURY+(II)+ION'>HG</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2kt2|2kt2]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2kt2|2kt2]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">merA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">merA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 "Bacillus aeruginosus" (Schroeter 1872) Trevisan 1885])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Mercury(II)_reductase Mercury(II) reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.1.1 1.16.1.1] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Mercury(II)_reductase Mercury(II) reductase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.1.1 1.16.1.1] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2kt3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kt3 OCA], [http://pdbe.org/2kt3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2kt3 RCSB], [http://www.ebi.ac.uk/pdbsum/2kt3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2kt3 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kt3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kt3 OCA], [https://pdbe.org/2kt3 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kt3 RCSB], [https://www.ebi.ac.uk/pdbsum/2kt3 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kt3 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MERA_PSEAI MERA_PSEAI]] Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0). | + | [[https://www.uniprot.org/uniprot/MERA_PSEAI MERA_PSEAI]] Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0). |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[MERA_PSEAI] Resistance to Hg(2+) in bacteria appears to be governed by a specialized system which includes mercuric reductase. MerA protein is responsible for volatilizing mercury as Hg(0).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
To avoid nonspecific and/or undesirable binding and reactivity of metal ions with cellular components, organisms have evolved metal-specific systems of trafficking proteins. Although systems differ, those handling soft metal ions such as Hg2+, Cu1+, Zn2+, etc., all utilize heavy metal associated (HMA) proteins and domains of ca. 70 amino acids with a conserved GMXCXXC motif in a betaalphabetabetaalphabeta structural fold. While the conserved cysteines define a common metal binding site in these proteins, other structural features must be utilized to create metal ion, protein partner and contextual specificities. This paper presents initial structure/function studies of the N-terminal HMA domain (NmerA) of Tn501 mercuric ion reductase (MerA) aimed at identifying structural features critical to its role in facilitating efficient transfer of Hg2+ to the MerA catalytic core for reductive detoxification. First, NMR solution structures of reduced and Hg2+-bound forms of NmerA are presented that allow definition and comparison of the structure of the metal binding loop in the two states. Structural differences between the two forms are compared with differences observed in three HMA domains with different metal ion and functional contexts. Second, analyses of the UV absorbance properties of wild type, Cys11Ala and Cys14Ala forms of NmerA are presented that provide assignment of the pKa values for the two cysteine thiols of the metal binding motif. Third, results from 13C-NMR studies of wild type and Y62F NmerA labeled with beta-13C-cysteine are presented that define a role for Tyr62 in modulating the pKa values of the cysteine thiols.
NmerA of Tn501 Mercuric Ion Reductase: Structural Modulation of the pKa Values of the Metal Binding Cysteine Thiols.,Ledwidge R, Hong B, Doetsch V, Miller SM Biochemistry. 2010 Sep 9. PMID:20828160[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ledwidge R, Hong B, Doetsch V, Miller SM. NmerA of Tn501 Mercuric Ion Reductase: Structural Modulation of the pKa Values of the Metal Binding Cysteine Thiols. Biochemistry. 2010 Sep 9. PMID:20828160 doi:10.1021/bi100537f
|