|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of Rhodobacter sphaeroides SigE in complex with the anti-sigma ChrR== | | ==Crystal Structure of Rhodobacter sphaeroides SigE in complex with the anti-sigma ChrR== |
- | <StructureSection load='2z2s' size='340' side='right' caption='[[2z2s]], [[Resolution|resolution]] 2.70Å' scene=''> | + | <StructureSection load='2z2s' size='340' side='right'caption='[[2z2s]], [[Resolution|resolution]] 2.70Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2z2s]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Rhos4 Rhos4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Z2S OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2Z2S FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2z2s]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhos4 Rhos4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2Z2S OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2Z2S FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2q1z|2q1z]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2q1z|2q1z]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpoE ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4]), chrR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpoE ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4]), chrR ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=272943 RHOS4])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2z2s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2z2s OCA], [http://pdbe.org/2z2s PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2z2s RCSB], [http://www.ebi.ac.uk/pdbsum/2z2s PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2z2s ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2z2s FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2z2s OCA], [https://pdbe.org/2z2s PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2z2s RCSB], [https://www.ebi.ac.uk/pdbsum/2z2s PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2z2s ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/RPOE_RHOS4 RPOE_RHOS4]] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor until released. Sigma-E controls a transcriptional response to singlet oxygen, a by-product of photosynthesis; its continuous activity requires constant exposure to singlet oxygen. The regulon has about 180 genes that protect against or repair damage induced by singlet oxygen, including itself and rpoH2, a heat shock-responsive sigma factor.<ref>PMID:11676534</ref> <ref>PMID:15855269</ref> <ref>PMID:17803943</ref> [[http://www.uniprot.org/uniprot/CHRR_RHOS4 CHRR_RHOS4]] Anti-sigma factor that inhibits the activity of the extracytoplasmic function (ECF) sigma-E factor (RpoE), thereby indirectly regulating the transcription of the cycA and rpoE genes. ECF sigma factors are held in an inactive form by a cognate anti-sigma factor.<ref>PMID:11676534</ref> <ref>PMID:15855269</ref> <ref>PMID:17803943</ref> | + | [[https://www.uniprot.org/uniprot/RPOE_RHOS4 RPOE_RHOS4]] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor until released. Sigma-E controls a transcriptional response to singlet oxygen, a by-product of photosynthesis; its continuous activity requires constant exposure to singlet oxygen. The regulon has about 180 genes that protect against or repair damage induced by singlet oxygen, including itself and rpoH2, a heat shock-responsive sigma factor.<ref>PMID:11676534</ref> <ref>PMID:15855269</ref> <ref>PMID:17803943</ref> [[https://www.uniprot.org/uniprot/CHRR_RHOS4 CHRR_RHOS4]] Anti-sigma factor that inhibits the activity of the extracytoplasmic function (ECF) sigma-E factor (RpoE), thereby indirectly regulating the transcription of the cycA and rpoE genes. ECF sigma factors are held in an inactive form by a cognate anti-sigma factor.<ref>PMID:11676534</ref> <ref>PMID:15855269</ref> <ref>PMID:17803943</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 35: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Rhos4]] | | [[Category: Rhos4]] |
| [[Category: Campbell, E A]] | | [[Category: Campbell, E A]] |
| Structural highlights
Function
[RPOE_RHOS4] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor until released. Sigma-E controls a transcriptional response to singlet oxygen, a by-product of photosynthesis; its continuous activity requires constant exposure to singlet oxygen. The regulon has about 180 genes that protect against or repair damage induced by singlet oxygen, including itself and rpoH2, a heat shock-responsive sigma factor.[1] [2] [3] [CHRR_RHOS4] Anti-sigma factor that inhibits the activity of the extracytoplasmic function (ECF) sigma-E factor (RpoE), thereby indirectly regulating the transcription of the cycA and rpoE genes. ECF sigma factors are held in an inactive form by a cognate anti-sigma factor.[4] [5] [6]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV sigma factor sigma(E) and its cognate anti-sigma ChrR. Crystal structures of the sigma(E)/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-sigma domain (ASD) binds a Zn(2+) ion, contacts sigma(E), and is sufficient to inhibit sigma(E)-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn(2+), and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-sigmas. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate sigma factor.
A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria.,Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Das K, Sofia HJ, Donohue TJ, Darst SA Mol Cell. 2007 Sep 7;27(5):793-805. PMID:17803943[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Newman JD, Anthony JR, Donohue TJ. The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J Mol Biol. 2001 Oct 26;313(3):485-99. PMID:11676534 doi:http://dx.doi.org/10.1006/jmbi.2001.5069
- ↑ Anthony JR, Warczak KL, Donohue TJ. A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7. Epub 2005 Apr 26. PMID:15855269 doi:http://dx.doi.org/10.1073/pnas.0502225102
- ↑ Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Das K, Sofia HJ, Donohue TJ, Darst SA. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol Cell. 2007 Sep 7;27(5):793-805. PMID:17803943 doi:10.1016/j.molcel.2007.07.009
- ↑ Newman JD, Anthony JR, Donohue TJ. The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J Mol Biol. 2001 Oct 26;313(3):485-99. PMID:11676534 doi:http://dx.doi.org/10.1006/jmbi.2001.5069
- ↑ Anthony JR, Warczak KL, Donohue TJ. A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci U S A. 2005 May 3;102(18):6502-7. Epub 2005 Apr 26. PMID:15855269 doi:http://dx.doi.org/10.1073/pnas.0502225102
- ↑ Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Das K, Sofia HJ, Donohue TJ, Darst SA. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol Cell. 2007 Sep 7;27(5):793-805. PMID:17803943 doi:10.1016/j.molcel.2007.07.009
- ↑ Campbell EA, Greenwell R, Anthony JR, Wang S, Lim L, Das K, Sofia HJ, Donohue TJ, Darst SA. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria. Mol Cell. 2007 Sep 7;27(5):793-805. PMID:17803943 doi:10.1016/j.molcel.2007.07.009
|