Sandbox Reserved 1683

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 22: Line 22:
Influenza A uses its trimer subunits to bind the template strand: the host capped RNA is bound by the PB2 cap-binding domain, followed by the cleavage of the PA/P3 endonuclease domain. <ref name="Velthuis" /> As mentioned before, the cap-binding domain then rotates allowing the insertion of the 3' end of the capped RNA, and then initiation begins once GTP is added to the 3' end of the capped primer which has become templated by the second residue in the viral RNA template. <ref name="Velthuis" />
Influenza A uses its trimer subunits to bind the template strand: the host capped RNA is bound by the PB2 cap-binding domain, followed by the cleavage of the PA/P3 endonuclease domain. <ref name="Velthuis" /> As mentioned before, the cap-binding domain then rotates allowing the insertion of the 3' end of the capped RNA, and then initiation begins once GTP is added to the 3' end of the capped primer which has become templated by the second residue in the viral RNA template. <ref name="Velthuis" />
-
Nucleotides are guided into the polymerase through the entry channel, which is made of highly conserved basic amino acids and consists of all three Influenza A RDRP subunits.<ref name="Velthuis" /> The priming loop is especially important, as it is a <scene name='89/891373/Beta_hairpin/4'>beta-hairpin</scene> that protrudes from the PB1 thumb domain and has the role of supporting the sugar-base of the initiating nucleotide and it contains <scene name='89/891373/Priming_loop/4'>conserved residues</scene> such as PRO651 and the catalytic ASP445-446.<ref name="Velthuis" /> Additionally, the hairpin contributes to endonuclease activity, guides the duplex template/copy dsRNA out of the active site, and confers some selectivity of oligonucleotide primers via steric hindrance in the active site <ref>PMID:27274864</ref>.
+
Nucleotides are guided into the polymerase through the entry channel, which is made of highly conserved basic amino acids and consists of all three Influenza A RDRP subunits.<ref name="Velthuis" /> The priming loop is especially important, as it is a <scene name='89/891373/Beta_hairpin/4'>beta-hairpin</scene> that protrudes from the PB1 thumb domain and has the role of supporting the sugar-base of the initiating nucleotide and it contains <scene name='89/891373/Priming_loop/4'>conserved residues</scene> such as PRO651 and the catalytic ASP445-446.<ref name="Velthuis" /> Additionally, the hairpin contributes to endonuclease activity, guides the duplex template/copy dsRNA out of the active site, and confers some selectivity of oligonucleotide primers via steric hindrance in the active site <ref>PMID:27274864</ref>.
== Conservation within Influenza A RDRP ==
== Conservation within Influenza A RDRP ==
-
Motifs I-IV of the PB1 subunit are all heavily conserved as they play a significant role in the replicative capabilities of the Influenza A RDRP <ref>PMID:22615752</ref>. Each motif is an approximately 10 residue-long sequence <ref>PMID:8107244</ref>. Click the respective scene links for close-ups of each motif (<scene name='89/891373/Motif_i/1'>I</scene>, <scene name='89/891373/Motif_ii/1'>II</scene>, III, IV).
+
The most highly conserved regions of the IAV RdRp are Motifs I-IV of the PB1 subunit, as they play a significant role in the replicative capabilities of the Influenza A RDRP <ref>PMID:22615752</ref>. Each motif is an approximately 10 residue-long sequence <ref>PMID:8107244</ref>. Click the respective scene links for close-ups of each motif (<scene name='89/891373/Motif_i/1'>I</scene>, <scene name='89/891373/Motif_ii/1'>II</scene>, <scene name='89/891373/Motif_iii/1'>III</scene>, IV).

Revision as of 01:18, 10 December 2021

Influenza A RNA-Dependent RNA Polymerase

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 Krammer F, Smith GJD, Fouchier RAM, Peiris M, Kedzierska K, Doherty PC, Palese P, Shaw ML, Treanor J, Webster RG, Garcia-Sastre A. Influenza. Nat Rev Dis Primers. 2018 Jun 28;4(1):3. doi: 10.1038/s41572-018-0002-y. PMID:29955068 doi:http://dx.doi.org/10.1038/s41572-018-0002-y
  2. https://www.cdc.gov/flu/about/burden/2019-2020.html
  3. https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
  4. Grohskopf LA, Alyanak E, Ferdinands JM, Broder KR, Blanton LH, Talbot HK, Fry AM. Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices, United States, 2021-22 Influenza Season. MMWR Recomm Rep. 2021 Aug 27;70(5):1-28. doi: 10.15585/mmwr.rr7005a1. PMID:34448800 doi:http://dx.doi.org/10.15585/mmwr.rr7005a1
  5. 5.0 5.1 5.2 5.3 5.4 5.5 5.6 Te Velthuis AJ, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016 Aug;14(8):479-93. doi: 10.1038/nrmicro.2016.87. Epub 2016, Jul 11. PMID:27396566 doi:http://dx.doi.org/10.1038/nrmicro.2016.87
  6. 6.0 6.1 6.2 Venkataraman S, Prasad BVLS, Selvarajan R. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Viruses. 2018 Feb 10;10(2). pii: v10020076. doi: 10.3390/v10020076. PMID:29439438 doi:http://dx.doi.org/10.3390/v10020076
  7. 7.0 7.1 Massari S, Bertagnin C, Pismataro MC, Donnadio A, Nannetti G, Felicetti T, Di Bona S, Nizi MG, Tensi L, Manfroni G, Loza MI, Sabatini S, Cecchetti V, Brea J, Goracci L, Loregian A, Tabarrini O. Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur J Med Chem. 2021 Jan 1;209:112944. doi: 10.1016/j.ejmech.2020.112944. Epub, 2020 Oct 16. PMID:33328103 doi:http://dx.doi.org/10.1016/j.ejmech.2020.112944
  8. 8.0 8.1 8.2 Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res. 2017 Apr 15;234:103-117. doi: 10.1016/j.virusres.2017.01.013. Epub, 2017 Jan 20. PMID:28115197 doi:http://dx.doi.org/10.1016/j.virusres.2017.01.013
  9. Hodges EN, Connor JH. Translational control by negative-strand RNA viruses: methods for the study of a crucial virus/host interaction. Methods. 2013 Feb;59(2):180-7. doi: 10.1016/j.ymeth.2012.09.003. Epub 2012 Sep, 23. PMID:23009810 doi:http://dx.doi.org/10.1016/j.ymeth.2012.09.003
  10. Stubbs TM, Te Velthuis AJ. The RNA-dependent RNA polymerase of the influenza A virus. Future Virol. 2014 Sep;9(9):863-876. doi: 10.2217/fvl.14.66. PMID:25431616 doi:http://dx.doi.org/10.2217/fvl.14.66
  11. Park CJ, Bae SH, Lee MK, Varani G, Choi BS. Solution structure of the influenza A virus cRNA promoter: implications for differential recognition of viral promoter structures by RNA-dependent RNA polymerase. Nucleic Acids Res. 2003 Jun 1;31(11):2824-32. PMID:12771209
  12. Te Velthuis AJ, Robb NC, Kapanidis AN, Fodor E. The role of the priming loop in Influenza A virus RNA synthesis. Nat Microbiol. 2016 May;1(5). doi: 10.1038/nmicrobiol.2016.29. Epub 2016 Mar 21. PMID:27274864 doi:http://dx.doi.org/10.1038/nmicrobiol.2016.29
  13. Chu C, Fan S, Li C, Macken C, Kim JH, Hatta M, Neumann G, Kawaoka Y. Functional analysis of conserved motifs in influenza virus PB1 protein. PLoS One. 2012;7(5):e36113. doi: 10.1371/journal.pone.0036113. Epub 2012 May 15. PMID:22615752 doi:http://dx.doi.org/10.1371/journal.pone.0036113
  14. Biswas SK, Nayak DP. Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1. J Virol. 1994 Mar;68(3):1819-26. doi: 10.1128/JVI.68.3.1819-1826.1994. PMID:8107244 doi:http://dx.doi.org/10.1128/JVI.68.3.1819-1826.1994
  15. Samji T. Influenza A: understanding the viral life cycle. Yale J Biol Med. 2009 Dec;82(4):153-9. PMID:20027280
Personal tools