|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal Structure of tRNA(Met) Cytidine Acetyltransferase== | | ==Crystal Structure of tRNA(Met) Cytidine Acetyltransferase== |
- | <StructureSection load='2zpa' size='340' side='right' caption='[[2zpa]], [[Resolution|resolution]] 2.35Å' scene=''> | + | <StructureSection load='2zpa' size='340' side='right'caption='[[2zpa]], [[Resolution|resolution]] 2.35Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2zpa]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZPA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ZPA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2zpa]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ecoli Ecoli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZPA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2ZPA FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> | | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=MSE:SELENOMETHIONINE'>MSE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TMCA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TMCA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2zpa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zpa OCA], [http://pdbe.org/2zpa PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2zpa RCSB], [http://www.ebi.ac.uk/pdbsum/2zpa PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2zpa ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2zpa FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zpa OCA], [https://pdbe.org/2zpa PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2zpa RCSB], [https://www.ebi.ac.uk/pdbsum/2zpa PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2zpa ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TMCA_ECOLI TMCA_ECOLI]] Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). It recognizes the wobble base of tRNA(Met), thus distinguishing between tRNA(Met) and the structurally similar tRNA(Ile2).[HAMAP-Rule:MF_01886]<ref>PMID:18668122</ref> <ref>PMID:19322199</ref> | + | [[https://www.uniprot.org/uniprot/TMCA_ECOLI TMCA_ECOLI]] Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). It recognizes the wobble base of tRNA(Met), thus distinguishing between tRNA(Met) and the structurally similar tRNA(Ile2).[HAMAP-Rule:MF_01886]<ref>PMID:18668122</ref> <ref>PMID:19322199</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 35: |
Line 35: |
| </StructureSection> | | </StructureSection> |
| [[Category: Ecoli]] | | [[Category: Ecoli]] |
| + | [[Category: Large Structures]] |
| [[Category: Chimnaronk, S]] | | [[Category: Chimnaronk, S]] |
| [[Category: Manita, T]] | | [[Category: Manita, T]] |
| Structural highlights
Function
[TMCA_ECOLI] Catalyzes the formation of N(4)-acetylcytidine (ac(4)C) at the wobble position of tRNA(Met), by using acetyl-CoA as an acetyl donor and ATP (or GTP). It recognizes the wobble base of tRNA(Met), thus distinguishing between tRNA(Met) and the structurally similar tRNA(Ile2).[HAMAP-Rule:MF_01886][1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Post-transcriptional RNA modifications in the anticodon of transfer RNAs frequently contribute to the high fidelity of protein synthesis. In eubacteria, two genome-encoded transfer RNA (tRNA) species bear the same CAU sequence as the anticodons, which are differentiated by modified cytidines at the wobble positions. The elongator tRNA(Met) accepts an acetyl moiety at the wobble base to form N(4)-acetylcytidine (ac(4)C): an inherent modification ensures precise decoding of the AUG codon by strengthening C-G base-pair interaction and concurrently preventing misreading of the near cognate AUA codon. We have determined the crystal structure of tRNA(Met) cytidine acetyltransferase (TmcA) from Escherichia coli complexed with two natural ligands, acetyl-CoA and ADP, at 2.35 A resolution. The structure unexpectedly reveals an idiosyncratic RNA helicase module fused with a GCN5-related N-acetyltransferase (GNAT) fold, which intimately cross-interact. Taken together with the biochemical evidence, we further unravelled the function of acetyl-CoA as an enzyme-activating switch, and propose that an RNA helicase motor driven by ATP hydrolysis is used to deliver the wobble base to the active centre of the GNAT domain.
RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon.,Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I EMBO J. 2009 May 6;28(9):1362-73. Epub 2009 Mar 26. PMID:19322199[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Ikeuchi Y, Kitahara K, Suzuki T. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J. 2008 Aug 20;27(16):2194-203. doi: 10.1038/emboj.2008.154. Epub 2008 Jul, 31. PMID:18668122 doi:http://dx.doi.org/10.1038/emboj.2008.154
- ↑ Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. EMBO J. 2009 May 6;28(9):1362-73. Epub 2009 Mar 26. PMID:19322199 doi:10.1038/emboj.2009.69
- ↑ Chimnaronk S, Suzuki T, Manita T, Ikeuchi Y, Yao M, Suzuki T, Tanaka I. RNA helicase module in an acetyltransferase that modifies a specific tRNA anticodon. EMBO J. 2009 May 6;28(9):1362-73. Epub 2009 Mar 26. PMID:19322199 doi:10.1038/emboj.2009.69
|