Sandbox Reserved 1650

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
(Restructuration and development of references)
(Organisation references)
Line 10: Line 10:
== Composition and 3D structure <ref>DOI 32025030</ref> ==
== Composition and 3D structure <ref>DOI 32025030</ref> ==
=== Global structure ===
=== Global structure ===
-
Human thyroglobulin is a dimeric glycoprotein consisting of 2749 amino acid residues with a molecular weight of 600 kDa. The average size of the dimer is 120x235 Å.
+
Human thyroglobulin is a dimeric glycoprotein consisting of 2749 amino acid residues with a molecular weight of 660 kDa. The average size of the dimer is 120x235 Å.
Each of its monomers comprises 5 distinct regions on which approximately 66 <scene name='86/868183/Tyr/2'>tyrosines</scene> (chain A in blue, chain B in green, chain C in dark red, chain D in light red) are distributed. These are the regions :
Each of its monomers comprises 5 distinct regions on which approximately 66 <scene name='86/868183/Tyr/2'>tyrosines</scene> (chain A in blue, chain B in green, chain C in dark red, chain D in light red) are distributed. These are the regions :
Line 70: Line 70:
The complex and particularly stable structure of <scene name='86/868183/Full_tg/2'>TG</scene> gives it iodide reservoir properties. Indeed, all iodinated but non-hormonoid tyrosines are useful for iodine storage in the thyroid gland.
The complex and particularly stable structure of <scene name='86/868183/Full_tg/2'>TG</scene> gives it iodide reservoir properties. Indeed, all iodinated but non-hormonoid tyrosines are useful for iodine storage in the thyroid gland.
-
== Interest in the medical field<ref>DOI 17614775</ref><ref>DOI 12721190</ref><ref>DOI 24147207</ref><ref>DOI 11788684</ref><ref>DOI 17201802</ref><ref>DOI 10.1677/ERC-10-0292</ref><ref>DOI 5773064</ref><ref>DOI 3681445</ref><ref>DOI 12089177</ref><ref>DOI 21134539</ref><ref>DOI 6814409</ref><ref>DOI 29984794</ref><ref>DOI 21649472</ref><ref>DOI 28593684</ref><ref>DOI 29246752</ref><ref>PMID: 762873</ref><ref>DOI 26595189</ref> ==
+
== Interest in the medical field<ref>DOI 17614775</ref><ref>DOI 10.1677/ERC-10-0292</ref><ref>DOI 5773064</ref><ref>DOI 3681445</ref><ref>DOI 12089177</ref><ref>DOI 21134539</ref><ref>DOI 6814409</ref><ref>DOI 29984794</ref><ref>DOI 26595189</ref> ==
=== Modification of the TG quantity related to the desease ===
=== Modification of the TG quantity related to the desease ===
-
A healthy subject has between 5 and 25 µg of TG per liter of blood. In case of thyroid dysfunction, this level may increase or decrease. For example, it decreases in the case of congenital athyreosis (insufficiency of the thyroid gland) or prior to a miscarriage due to the presence of anti-TG antibodies, but increases in the case of cancer, thyroiditis, inflammation of the thyroid or autoimmune thyroid diseases AITD (Grave's disease, Hashimoto's thyroiditis).
+
A healthy subject has between 5 and 25 µg of TG per liter of blood. In case of thyroid dysfunction, this level may increase or decrease. For example, it decreases in the case of congenital athyreosis (insufficiency of the thyroid gland) or prior to a miscarriage due to the presence of anti-TG antibodies, but increases in the case of cancer, thyroiditis, inflammation of the thyroid or autoimmune thyroid diseases AITD <ref>DOI 24147207</ref>(Grave's disease, Hashimoto's thyroiditis).<ref>DOI 11788684</ref>
-
In addition, a decrease in the size or capacity of the thyroid causes a decrease in the synthesis of TH by the <scene name='86/868183/Full_tg/2'>TG</scene>, and thus a drop in the blood level of T4 and T3, which in turn causes heart disease, brain disease and abnormalities in the development of the fetus.
+
In addition, a decrease in the size or capacity of the thyroid causes a decrease in the synthesis of TH by the <scene name='86/868183/Full_tg/2'>TG</scene>, and thus a drop in the blood level of T4 and T3, which in turn causes heart disease, brain disease and abnormalities in the development of the fetus. <ref>DOI 29246752</ref><ref>DOI 28593684</ref><ref>DOI 12721190</ref>
-
The variation of the quantity of TG can thus be as much a cause as a consequence of disease.
+
The variation of the quantity of TG can thus be as much a cause as a consequence of disease.<ref>DOI 17201802</ref>
=== Use of TG to treat deseases ===
=== Use of TG to treat deseases ===
Line 83: Line 83:
Since serum <scene name='86/868183/Full_tg/2'>TG</scene> levels are correlated with the volume of thyroid tissue, we can also estimate the mass of thyroid tissue to detect hyperthyroidism, a disease related to an enlarged thyroid or, conversely, hypothyroidism.
Since serum <scene name='86/868183/Full_tg/2'>TG</scene> levels are correlated with the volume of thyroid tissue, we can also estimate the mass of thyroid tissue to detect hyperthyroidism, a disease related to an enlarged thyroid or, conversely, hypothyroidism.
-
For example, thyroidectomy and a iodine-131 therapy can be performed to cure thyroid cancer with an 80% chance. Following removal and iodine-131 therapy, thyroglobulin is this time produced by malignant thyrocytes. As a result, its blood level is indistinguishable from that of a healthy person.
+
For example, thyroidectomy and a iodine-131 therapy can be performed to cure thyroid cancer with an 80% chance. Following removal and iodine-131 therapy, thyroglobulin is this time produced by malignant thyrocytes. As a result, its blood level is indistinguishable from that of a healthy person. <ref>PMID: 762873</ref><ref>DOI 21649472</ref>
But in case of recurrence and persistence of cancer, its level can increase again. Thyroglobulin therefore always serves as a tumor marker allowing us to estimate the risk of recurrence (>2ng/ml) or persistence (>1ng/ml) or remission.
But in case of recurrence and persistence of cancer, its level can increase again. Thyroglobulin therefore always serves as a tumor marker allowing us to estimate the risk of recurrence (>2ng/ml) or persistence (>1ng/ml) or remission.

Revision as of 15:11, 9 January 2022

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Human thyroglobulin (TG)

Human thyroglobulin

Drag the structure with the mouse to rotate

References

  1. Coscia F, Taler-Vercic A, Chang VT, Sinn L, O'Reilly FJ, Izore T, Renko M, Berger I, Rappsilber J, Turk D, Lowe J. The structure of human thyroglobulin. Nature. 2020 Feb 5. pii: 10.1038/s41586-020-1995-4. doi:, 10.1038/s41586-020-1995-4. PMID:32025030 doi:http://dx.doi.org/10.1038/s41586-020-1995-4
  2. Parma J, Christophe D, Pohl V, Vassart G. Structural organization of the 5' region of the thyroglobulin gene. Evidence for intron loss and "exonization" during evolution. J Mol Biol. 1987 Aug 20;196(4):769-79. PMID:3681978
  3. Mendive FM, Rivolta CM, Moya CM, Vassart G, Targovnik HM. Genomic organization of the human thyroglobulin gene: the complete intron-exon structure. Eur J Endocrinol. 2001 Oct;145(4):485-96. doi: 10.1530/eje.0.1450485. PMID:11581009 doi:http://dx.doi.org/10.1530/eje.0.1450485
  4. Malthiery Y, Lissitzky S. Primary structure of human thyroglobulin deduced from the sequence of its 8448-base complementary DNA. Eur J Biochem. 1987 Jun 15;165(3):491-8. PMID:3595599
  5. van de Graaf SA, Ris-Stalpers C, Pauws E, Mendive FM, Targovnik HM, de Vijlder JJ. Up to date with human thyroglobulin. J Endocrinol. 2001 Aug;170(2):307-21. doi: 10.1677/joe.0.1700307. PMID:11479128 doi:http://dx.doi.org/10.1677/joe.0.1700307
  6. Brocas H, Christophe D, Pohl V, Vassart G. Cloning of human thyroglobulin complementary DNA. FEBS Lett. 1982 Jan 25;137(2):189-92. doi: 10.1016/0014-5793(82)80346-3. PMID:6895876 doi:http://dx.doi.org/10.1016/0014-5793(82)80346-3
  7. Baas F, van Ommen GJ, Bikker H, Arnberg AC, de Vijlder JJ. The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb. Nucleic Acids Res. 1986 Jul 11;14(13):5171-86. doi: 10.1093/nar/14.13.5171. PMID:3016640 doi:http://dx.doi.org/10.1093/nar/14.13.5171
  8. Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, Formisano S, Arvan P. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J. 2003 Mar 1;370(Pt 2):449-58. doi: 10.1042/BJ20021257. PMID:12401114 doi:http://dx.doi.org/10.1042/BJ20021257
  9. de Vijlder JJ, den Hartog MT. Anionic iodotyrosine residues are required for iodothyronine synthesis. Eur J Endocrinol. 1998 Feb;138(2):227-31. doi: 10.1530/eje.0.1380227. PMID:9506870 doi:http://dx.doi.org/10.1530/eje.0.1380227
  10. Dunn AD, Crutchfield HE, Dunn JT. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J Biol Chem. 1991 Oct 25;266(30):20198-204. PMID:1939080
  11. Rolland M, Montfort MF, Lissitzky S. Efficiency of thyroglobulin as a thyroid hormone-forming protein. Biochim Biophys Acta. 1973 Apr 20;303(2):338-47. doi:, 10.1016/0005-2795(73)90365-6. PMID:4710237 doi:http://dx.doi.org/10.1016/0005-2795(73)90365-6
  12. Maurizis JC, Marriq C, Michelot J, Rolland M, Lissitzky S. Thyroid peroxidase-induced thyroid hormone synthesis in relation to thyroglobulin structure. FEBS Lett. 1979 Jun 1;102(1):82-6. doi: 10.1016/0014-5793(79)80933-3. PMID:456595 doi:http://dx.doi.org/10.1016/0014-5793(79)80933-3
  13. Fassler CA, Dunn JT, Anderson PC, Fox JW, Dunn AD, Hite LA, Moore RC, Kim PS. Thyrotropin alters the utilization of thyroglobulin's hormonogenic sites. J Biol Chem. 1988 Nov 25;263(33):17366-71. PMID:3182849
  14. Di Jeso B, Liguoro D, Ferranti P, Marinaccio M, Acquaviva R, Formisano S, Consiglio E. Modulation of the carbohydrate moiety of thyroglobulin by thyrotropin and calcium in Fisher rat thyroid line-5 cells. J Biol Chem. 1992 Jan 25;267(3):1938-44. PMID:1370485
  15. Leboeuf R, Emerick LE, Martorella AJ, Tuttle RM. Impact of pregnancy on serum thyroglobulin and detection of recurrent disease shortly after delivery in thyroid cancer survivors. Thyroid. 2007 Jun;17(6):543-7. doi: 10.1089/thy.2007.0020. PMID:17614775 doi:http://dx.doi.org/10.1089/thy.2007.0020
  16. Nascimento C, Borget I, Al Ghuzlan A, Deandreis D, Chami L, Travagli JP, Hartl D, Lumbroso J, Chougnet C, Lacroix L, Baudin E, Schlumberger M, Leboulleux S. Persistent disease and recurrence in differentiated thyroid cancer patients with undetectable postoperative stimulated thyroglobulin level. Endocr Relat Cancer. 2011 Mar 3;18(2):R29-40. doi: 10.1677/ERC-10-0292. Print, 2011 Apr. PMID:21183629 doi:http://dx.doi.org/10.1677/ERC-10-0292
  17. Torrigiani G, Doniach D, Roitt IM. Serum thyroglobulin levels in healthy subjects and in patients with thyroid disease. J Clin Endocrinol Metab. 1969 Mar;29(3):305-14. doi: 10.1210/jcem-29-3-305. PMID:5773064 doi:http://dx.doi.org/10.1210/jcem-29-3-305
  18. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, Pinchera A. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987 Dec;28(12):1888-91. PMID:3681445
  19. Morgenthaler NG, Froehlich J, Rendl J, Willnich M, Alonso C, Bergmann A, Reiners C. Technical evaluation of a new immunoradiometric and a new immunoluminometric assay for thyroglobulin. Clin Chem. 2002 Jul;48(7):1077-83. PMID:12089177
  20. Hughes DT, White ML, Miller BS, Gauger PG, Burney RE, Doherty GM. Influence of prophylactic central lymph node dissection on postoperative thyroglobulin levels and radioiodine treatment in papillary thyroid cancer. Surgery. 2010 Dec;148(6):1100-6; discussion 1006-7. doi:, 10.1016/j.surg.2010.09.019. PMID:21134539 doi:http://dx.doi.org/10.1016/j.surg.2010.09.019
  21. Galligan JP, Winship J, van Doorn T, Mortimer RH. A comparison of serum thyroglobulin measurements and whole body 131I scanning in the management of treated differentiated thyroid carcinoma. Aust N Z J Med. 1982 Aug;12(4):248-54. doi: 10.1111/j.1445-5994.1982.tb03805.x. PMID:6814409 doi:http://dx.doi.org/10.1111/j.1445-5994.1982.tb03805.x
  22. Flores-Rebollar A, Perez-Diaz I, Lagunas-Barcenas S, Garcia-Martinez B, Rivera-Moscoso R, Fagundo-Sierra R. Clinical utility of an ultrasensitive thyroglobulin assay in the follow-up of patients with differentiated thyroid cancer: can the stimulation test be avoided in patients with an intermediate recurrence risk? Acta Otorhinolaryngol Ital. 2018 Jun;38(3):188-193. doi: 10.14639/0392-100X-1494. PMID:29984794 doi:http://dx.doi.org/10.14639/0392-100X-1494
  23. Di Jeso B, Arvan P. Thyroglobulin From Molecular and Cellular Biology to Clinical Endocrinology. Endocr Rev. 2016 Feb;37(1):2-36. doi: 10.1210/er.2015-1090. Epub 2015 Nov 23. PMID:26595189 doi:http://dx.doi.org/10.1210/er.2015-1090
  24. Kawasaki E, Yasui J, Tsurumaru M, Takashima H, Ikeoka T, Mori F, Akazawa S, Ueki I, Kobayashi M, Kuwahara H, Abiru N, Yamasaki H, Kawakami A. Sequential elevation of autoantibodies to thyroglobulin and glutamic acid decarboxylase in type 1 diabetes. World J Diabetes. 2013 Oct 15;4(5):227-30. doi: 10.4239/wjd.v4.i5.227. PMID:24147207 doi:http://dx.doi.org/10.4239/wjd.v4.i5.227
  25. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 2002 Jan;87(1):404-7. doi: 10.1210/jcem.87.1.8291. PMID:11788684 doi:http://dx.doi.org/10.1210/jcem.87.1.8291
  26. De Leo S, Pearce EN. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018 Jul;6(7):575-586. doi:, 10.1016/S2213-8587(17)30402-3. Epub 2017 Dec 12. PMID:29246752 doi:http://dx.doi.org/10.1016/S2213-8587(17)30402-3
  27. Katko M, Gazso AA, Hircsu I, Bhattoa HP, Molnar Z, Kovacs B, Andrasi D, Aranyosi J, Makai R, Veress L, Torok O, Bodor M, Samson L, Nagy EV. Thyroglobulin level at week 16 of pregnancy is superior to urinary iodine concentration in revealing preconceptual and first trimester iodine supply. Matern Child Nutr. 2018 Jan;14(1). doi: 10.1111/mcn.12470. Epub 2017 Jun 7. PMID:28593684 doi:http://dx.doi.org/10.1111/mcn.12470
  28. Matalon ST, Blank M, Levy Y, Carp HJ, Arad A, Burek L, Grunebaum E, Sherer Y, Ornoy A, Refetoff S, Weiss RE, Rose NR, Shoenfeld Y. The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Hum Reprod. 2003 May;18(5):1094-9. doi: 10.1093/humrep/deg210. PMID:12721190 doi:http://dx.doi.org/10.1093/humrep/deg210
  29. Heemstra KA, Liu YY, Stokkel M, Kievit J, Corssmit E, Pereira AM, Romijn JA, Smit JW. Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2007 Jan;66(1):58-64. doi:, 10.1111/j.1365-2265.2006.02685.x. PMID:17201802 doi:http://dx.doi.org/10.1111/j.1365-2265.2006.02685.x
  30. Gerfo PL, Colacchio T, Colacchio D, Feind C. Thyroglobulin in benign and malignant thyroid disease. JAMA. 1979 Mar 2;241(9):923-4. PMID:762873
  31. Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, Higashiyama T, Fukushima M, Kihara M, Inoue H, Tomoda C, Yabuta T, Masuoka H. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011 Jul;21(7):707-16. doi: 10.1089/thy.2010.0355. Epub 2011 Jun 7. PMID:21649472 doi:http://dx.doi.org/10.1089/thy.2010.0355
Personal tools