1aym

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='1aym' size='340' side='right'caption='[[1aym]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
<StructureSection load='1aym' size='340' side='right'caption='[[1aym]], [[Resolution|resolution]] 2.15&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1aym]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human_rhinovirus Human rhinovirus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AYM OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1AYM FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1aym]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human_rhinovirus Human rhinovirus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AYM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AYM FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DAO:LAURIC+ACID'>DAO</scene>, <scene name='pdbligand=MYR:MYRISTIC+ACID'>MYR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=DAO:LAURIC+ACID'>DAO</scene>, <scene name='pdbligand=MYR:MYRISTIC+ACID'>MYR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1aym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aym OCA], [http://pdbe.org/1aym PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1aym RCSB], [http://www.ebi.ac.uk/pdbsum/1aym PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1aym ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1aym FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aym OCA], [https://pdbe.org/1aym PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1aym RCSB], [https://www.ebi.ac.uk/pdbsum/1aym PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1aym ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/POLG_HRV1A POLG_HRV1A]] Protein VP1: Forms, together with VP2 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Protein VP1 mainly forms the vertices of the capsid. VP1 interacts with host cell receptor VLDLR to provide virion attachment to target cell. This attachment induces virion internalization through a cell-type specific entry mechanism. After binding to its receptor, the capsid undergoes conformational changes. VP1 N-terminus (that contains an amphipathic alpha-helix) is externalized, VP4 is released and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks (By similarity). Protein VP2: Forms, together with VP1 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity). Protein VP3: Forms, together with VP1 and VP2, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity). Protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. VP4 is released, VP1 N-terminus is externalized, and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks (By similarity). Protein VP0: Protein VP0: VP0 precursor is a component of immature procapsids, which gives rise to VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity). Protease 2A: cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factors EIF4G1, in order to shut off the capped cellular mRNA transcription. Protease 2A also degrades host nucleoporins NUP62, NUP98 and NUP153 thereby blocking the nucleo-cytoplasmic trafficking, in particular the export of cellular mRNAs. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity). Protein 2B: affects membrane integrity and cause an increase in membrane permeability (By similarity). Protein 2C: associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity). Protein 3A: via its hydrophobic domain, serves as membrane anchor (By similarity). Protein 3C: cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind cooperatively to the protease. Cleaves Nup153, Nup214, and Nup358 thereby blocking the nucleo-cytoplasmic trafficking. Contributes to host cell shutoff in infected cells by localizing in the nucleus and facilitating nuclear pore breakdown (By similarity). RNA-directed RNA polymerase 3D-POL: replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity). [[http://www.uniprot.org/uniprot/POLG_HRV16 POLG_HRV16]] Capsid proteins VP1, VP2, VP3 and VP4 form a closed capsid enclosing the viral positive strand RNA genome. VP4 lies on the inner surface of the protein shell formed by VP1, VP2 and VP3. All the three latter proteins contain a beta-sheet structure called beta-barrel jelly roll. Together they form an icosahedral capsid (T=3) composed of 60 copies of each VP1, VP2, and VP3, with a diameter of approximately 300 Angstroms. VP1 is situated at the 12 fivefold axes, whereas VP2 and VP3 are located at the quasi-sixfold axes. The capsid interacts with human ICAM1 to provide virion attachment to target cell. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis (By similarity). VP0 precursor is a component of immature procapsids (By similarity). Protein 2A is a cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA transcription (By similarity). Protein 2B affects membrane integrity and cause an increase in membrane permeability (By similarity). Protein 2C associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity). Protein 3A, via its hydrophobic domain, serves as membrane anchor (By similarity). Protein 3C is a cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind co-operatively to the protease (By similarity). RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity).
+
[[https://www.uniprot.org/uniprot/POLG_HRV1A POLG_HRV1A]] Protein VP1: Forms, together with VP2 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Protein VP1 mainly forms the vertices of the capsid. VP1 interacts with host cell receptor VLDLR to provide virion attachment to target cell. This attachment induces virion internalization through a cell-type specific entry mechanism. After binding to its receptor, the capsid undergoes conformational changes. VP1 N-terminus (that contains an amphipathic alpha-helix) is externalized, VP4 is released and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks (By similarity). Protein VP2: Forms, together with VP1 and VP3, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity). Protein VP3: Forms, together with VP1 and VP2, an icosahedral capsid (pseudo T=3), 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity). Protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. VP4 is released, VP1 N-terminus is externalized, and together, they shape a virion-cell connecting channel and a pore in the host membrane through which RNase-protected transfer of the viral genome takes place. After genome has been released, the channel shrinks (By similarity). Protein VP0: Protein VP0: VP0 precursor is a component of immature procapsids, which gives rise to VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity). Protease 2A: cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factors EIF4G1, in order to shut off the capped cellular mRNA transcription. Protease 2A also degrades host nucleoporins NUP62, NUP98 and NUP153 thereby blocking the nucleo-cytoplasmic trafficking, in particular the export of cellular mRNAs. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity). Protein 2B: affects membrane integrity and cause an increase in membrane permeability (By similarity). Protein 2C: associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity). Protein 3A: via its hydrophobic domain, serves as membrane anchor (By similarity). Protein 3C: cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind cooperatively to the protease. Cleaves Nup153, Nup214, and Nup358 thereby blocking the nucleo-cytoplasmic trafficking. Contributes to host cell shutoff in infected cells by localizing in the nucleus and facilitating nuclear pore breakdown (By similarity). RNA-directed RNA polymerase 3D-POL: replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity). [[https://www.uniprot.org/uniprot/POLG_HRV16 POLG_HRV16]] Capsid proteins VP1, VP2, VP3 and VP4 form a closed capsid enclosing the viral positive strand RNA genome. VP4 lies on the inner surface of the protein shell formed by VP1, VP2 and VP3. All the three latter proteins contain a beta-sheet structure called beta-barrel jelly roll. Together they form an icosahedral capsid (T=3) composed of 60 copies of each VP1, VP2, and VP3, with a diameter of approximately 300 Angstroms. VP1 is situated at the 12 fivefold axes, whereas VP2 and VP3 are located at the quasi-sixfold axes. The capsid interacts with human ICAM1 to provide virion attachment to target cell. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis (By similarity). VP0 precursor is a component of immature procapsids (By similarity). Protein 2A is a cysteine protease that is responsible for the cleavage between the P1 and P2 regions. It cleaves the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA transcription (By similarity). Protein 2B affects membrane integrity and cause an increase in membrane permeability (By similarity). Protein 2C associates with and induces structural rearrangements of intracellular membranes. It displays RNA-binding, nucleotide binding and NTPase activities (By similarity). Protein 3A, via its hydrophobic domain, serves as membrane anchor (By similarity). Protein 3C is a cysteine protease that generates mature viral proteins from the precursor polyprotein. In addition to its proteolytic activity, it binds to viral RNA, and thus influences viral genome replication. RNA and substrate bind co-operatively to the protease (By similarity). RNA-directed RNA polymerase 3D-POL replicates genomic and antigenomic RNA by recognizing replications specific signals (By similarity).
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]

Revision as of 10:13, 12 January 2022

HUMAN RHINOVIRUS 16 COAT PROTEIN AT HIGH RESOLUTION

PDB ID 1aym

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools