Sandbox Reserved 1091
From Proteopedia
(Difference between revisions)
Line 46: | Line 46: | ||
The [http://en.wikipedia.org/wiki/Catalytic_triad '''catalytic triad'''] of ASP is composed of '''Asp78''', '''His115''' and '''Ser336'''. A peptide can be inserted in the space of the active site. The amino acids of <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> will interact together and the mechanism will lead to a cut in the polypeptide. This triad can be observed in a 2D representation of the protein : [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785694/figure/F3/ '''catalytic triad of ASP'''] | The [http://en.wikipedia.org/wiki/Catalytic_triad '''catalytic triad'''] of ASP is composed of '''Asp78''', '''His115''' and '''Ser336'''. A peptide can be inserted in the space of the active site. The amino acids of <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> will interact together and the mechanism will lead to a cut in the polypeptide. This triad can be observed in a 2D representation of the protein : [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785694/figure/F3/ '''catalytic triad of ASP'''] | ||
- | |||
The '''mechanism''' of the reaction is that the histidine will react with the serine and deprotonate it. The deprotonated hydroxyl group of the serine will act as a nucleophilic species and attack the carbon from the carbonyl function on the peptide. This will lead to the formation of a tetrahedral intermediate. The regeneration of the carbonyl group will be followed by the release of one part of the peptide, with an amine group at its extremity. Then, a second tetrahedral intermediate will be formed, but with the attack of a deprotonated water molecule. In the end, the regeneration of the active site will be done with the release of the part of the peptide with a carboxyl extremity. '''The polypeptide is also cut in two parts and the target protein isn't functional anymore'''. <ref>http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png</ref>A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ] | The '''mechanism''' of the reaction is that the histidine will react with the serine and deprotonate it. The deprotonated hydroxyl group of the serine will act as a nucleophilic species and attack the carbon from the carbonyl function on the peptide. This will lead to the formation of a tetrahedral intermediate. The regeneration of the carbonyl group will be followed by the release of one part of the peptide, with an amine group at its extremity. Then, a second tetrahedral intermediate will be formed, but with the attack of a deprotonated water molecule. In the end, the regeneration of the active site will be done with the release of the part of the peptide with a carboxyl extremity. '''The polypeptide is also cut in two parts and the target protein isn't functional anymore'''. <ref>http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png</ref>A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ] |
Revision as of 14:07, 12 January 2022
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
The serine protease from Aeromonas sobria : ASP
|
References
- ↑ https://en.wikipedia.org/wiki/Serine_protease
- ↑ Draft Genome Sequence of Aeromonas sobria Strain 08005, Isolated from Sick Rana Catesbeiana, Qiu-Hua Yang, ASM Journals, Genome Announcements, Vol. 5, No. 2, (2017)
- ↑ Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
- ↑ Siezen RJ & Leunissen JAM (1997) Subtilase: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501–523.
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al. (2017)
- ↑ http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
- ↑ Khan R, Takahashi E, Ramamurthy T, Takeda Y, Okamoto K. Salt in surroundings influences the production of serine protease into milieu by Aeromonas sobria. Microbiol Immunol. 2007;51(10):963-76. PMID:17951986
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)
- ↑ http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Joseph, S. W., O. P. Daily, W. S. Hunt, R. J. Seidler, D. A. Allen, and R. R. Colwell. 1979. Aeromonas primary wound infection of a diver in polluted waters. J. Clin. Microbiol. 10:46-49.
- ↑ Emerging Aeromonas Species Infections and Their Significance in Public Health, Isoken H. Igbinosa, ScientificWorldJournal, 625023 (2012)
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Mechanisms of Inflammation and Tissue Repair. Gary S. Firestein, Goldman’s Cecil Medicine (Twenty Fourth Edition) (2012)
- ↑ Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)