Sandbox Reserved 1645
From Proteopedia
(Difference between revisions)
Line 17: | Line 17: | ||
== FBN1 gene == | == FBN1 gene == | ||
- | This gene <ref>Weizmann Institute of Science, FBN1 gene, last consulted [09/01/22],https://www.genecards.org/cgi-bin/carddisp.pl?gene=FBN1</ref> encodes a member of the '''fibrillin family''' of proteins. The encoded preproprotein is proteolytically processed to generate two proteins including the extracellular matrix component fibrillin-1 and the protein hormone asprosin. Fibrillin-1 is an extracellular matrix glycoprotein that serves as a structural component of calcium-binding microfibrils. These microfibrils provide force-bearing structural support in elastic and nonelastic connective tissue throughout the body. Asprosin, secreted by white adipose tissue, has been shown to regulate glucose homeostasis. Mutations in this gene are associated with '''Marfan syndrome''' and the related MASS phenotype, as well as ectopia lentis syndrome, [https://en.wikipedia.org/wiki/Weill%E2%80%93Marchesani_syndrome Weill-Marchesani syndrome], [https://en.wikipedia.org/wiki/Shprintzen%E2%80%93Goldberg_syndrome Shprintzen-Goldberg syndrome] and neonatal progeroid syndrome. [provided by RefSeq, Apr 2016] | + | This gene <ref>Weizmann Institute of Science, FBN1 gene, last consulted [09/01/22],https://www.genecards.org/cgi-bin/carddisp.pl?gene=FBN1</ref> encodes a member of the '''fibrillin family''' of proteins. The encoded preproprotein is proteolytically processed to generate two proteins including the extracellular matrix component fibrillin-1 and the protein hormone asprosin. Fibrillin-1 is an extracellular matrix glycoprotein that serves as a structural component of calcium-binding microfibrils. These microfibrils provide force-bearing structural support in elastic and nonelastic connective tissue throughout the body. Asprosin, secreted by white adipose tissue, has been shown to regulate glucose homeostasis. Mutations in this gene are associated with '''Marfan syndrome''' and the related MASS phenotype, as well as ectopia lentis syndrome, [https://en.wikipedia.org/wiki/Weill%E2%80%93Marchesani_syndrome Weill-Marchesani syndrome], [https://en.wikipedia.org/wiki/Shprintzen%E2%80%93Goldberg_syndrome Shprintzen-Goldberg syndrome] and [https://en.wikipedia.org/wiki/Wiedemann%E2%80%93Rautenstrauch_syndrome neonatal progeroid syndrome]. [provided by RefSeq, Apr 2016] |
== Biological Function == | == Biological Function == |
Current revision
This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664. |
To get started:
More help: Help:Editing |
Fibrillin-1
|
References
- ↑ Handford, P. A. (2000). Fibrillin-1, a calcium binding protein of extracellular matrix. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1498(2), 84–90. https://doi.org/10.1016/S0167-4889(00)00085-9
- ↑ Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguineti C, Bonadio J, Mecham RP, Ramirez F (March 1994). "Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices". The Journal of Cell Biology. 124 (5): 855–63. doi:10.1083/jcb.124.5.855. PMC 2119952. PMID 8120105.
- ↑ Corson GM, Charbonneau NL, Keene DR, Sakai LY (March 2004). "Differential expression of fibrillin-3 adds to microfibril variety in human and avian, but not rodent, connective tissues". Genomics. 83 (3): 461–72. doi:10.1016/j.ygeno.2003.08.023. PMID 14962672.
- ↑ Gansner JM, Madsen EC, Mecham RP, Gitlin JD (October 2008). "Essential role for fibrillin-2 in zebrafish notochord and vascular morphogenesis". Developmental Dynamics. 237 (10): 2844–61. doi:10.1002/dvdy.21705. PMC 3081706. PMID 18816837.
- ↑ Sandra Schrenk Carola Cenzi Thomas Bertalot Maria Teresa Conconi Rosa Di Liddo, (2017), pages: 1213-1223,https://doi.org/10.3892/ijmm.2017.3343
- ↑ Weizmann Institute of Science, FBN1 gene, last consulted [09/01/22],https://www.genecards.org/cgi-bin/carddisp.pl?gene=FBN1
- ↑ Robert N. Ono, Gerhard Sengle, Noe L. Charbonneau, Valerie Carlberg, Hans Peter Bächinger, Takako Sasaki, Sui Lee-Arteaga, Lior Zilberberg, Daniel B. Rifkin, Francesco Ramirez, Mon-LiChu, Lynn Y.Sakai. (2009). Latent Transforming Growth Factor β-binding Proteins and Fibulins Compete for Fibrillin-1 and Exhibit Exquisite Specificities in Binding Sites. Journal of Biological Chemistry, volume (284). https://www.sciencedirect.com/science/article/pii/S0021925818665056
- ↑ Shazia S. Chaudhry, Stuart A. Cain, Amanda Morgan, Sarah L. Dallas, C. Adrian Shuttleworth, Cay M. Kielty; Fibrillin-1 regulates the bioavailability of TGFβ1. J Cell Biol 29 January 2007; 176 (3): 355–367. doi: https://doi.org/10.1083/jcb.200608167
- ↑ Quondamatteo F, Reinhardt DP, Charbonneau NL, Pophal G, Sakai LY, Herken R (December 2002). "Fibrillin-1 and fibrillin-2 in human embryonic and early fetal development". Matrix Biology. 21 (8): 637–46. doi:10.1016/s0945-053x(02)00100-2. PMID 12524050. / Ammash NM, Sundt TM, Connolly HM (January 2008). "Marfan syndrome-diagnosis and management". Current Problems in Cardiology. 33 (1): 7–39. doi:10.1016/j.cpcardiol.2007.10.001. PMID 18155514. / Votteler M, Berrio DA, Horke A, Sabatier L, Reinhardt DP, Nsair A, Aikawa E, Schenke-Layland K (June 2013). "Elastogenesis at the onset of human cardiac valve development". Development. 140 (11): 2345–53. doi:10.1242/dev.093500. PMC 3912871. PMID 23637335.
- ↑ D. Pollard, C.Earnshaw, J. Lippincott-Schwartz, G. T.Johson, Cell Biology, Third Edition.
- ↑ E. Martínez-Quintana, F. Rodríguez-González, P. Garay-Sánchez, and A. Tugoresb. (2014).A Novel Fibrillin 1 Gene Mutation Leading to Marfan Syndrome with Minimal Cardiac Features. Molecular Syndormology, volume (5), 236-240.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4188161/
- ↑ TGFBR2.https://www.omim.org/entry/190182?search=TGFBR2&highlight=tgfbr2
- ↑ Am J Hum Genet.(1999), Cysteine Substitutions in Epidermal Growth Factor–Like Domains of Fibrillin-1: Distinct Effects on Biochemical and Clinical Phenotypes, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1288233/