Sandbox Reserved 1098
From Proteopedia
(Difference between revisions)
Line 35: | Line 35: | ||
The PAR protein is a potential target in drug discovery as there are no close homologues of PARG. That’s why there has already been a lot of research concerning novel treatments. | The PAR protein is a potential target in drug discovery as there are no close homologues of PARG. That’s why there has already been a lot of research concerning novel treatments. | ||
- | + | The goal of searched therapeutics is to find a way to get the protein PARG into a complex that is acting similar to the 6HMM complex.Indeed the protein in complex with the anthraquinone does not work properly anymore [http://www.rcsb.org/structure/6HMM], the described complex shows how an inhibited PARG might act in the cell. For now, the research for anthraquinone as inhibitor has stopped as it is cytotoxic for the cell<ref name="James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AI, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol. 2016 Oct 12."/>. | |
Revision as of 19:31, 21 January 2022
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
6HMM
|
References
- ↑ Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics. 2010 May;11(3):184-98. doi: 10.2174/138920210791110979. PMID:21037856 doi:http://dx.doi.org/10.2174/138920210791110979
- ↑ Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 2011 Sep 4. doi: 10.1038/nature10404. PMID:21892188 doi:10.1038/nature10404
- ↑ 3.0 3.1 3.2 Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792. doi: 10.1021/acs.jmedchem.8b01407., Epub 2018 Nov 19. PMID:30403352 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b01407
- ↑ 4.0 4.1 4.2 4.3 James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AI, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol. 2016 Oct 12. PMID:27689388 doi:http://dx.doi.org/10.1021/acschembio.6b00609
- ↑ Fisher AE, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007 Aug;27(15):5597-605. doi: 10.1128/MCB.02248-06. Epub 2007 Jun, 4. PMID:17548475 doi:http://dx.doi.org/10.1128/MCB.02248-06
- ↑ Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 2005 Sep 1;19(17):1951-67. doi: 10.1101/gad.1331805. PMID:16140981 doi:http://dx.doi.org/10.1101/gad.1331805