7jgu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==Structure of FN3tt mut==
==Structure of FN3tt mut==
-
<StructureSection load='7jgu' size='340' side='right'caption='[[7jgu]]' scene=''>
+
<StructureSection load='7jgu' size='340' side='right'caption='[[7jgu]], [[Resolution|resolution]] 1.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JGU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JGU FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[7jgu]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Cals4 Cals4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=7JGU OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=7JGU FirstGlance]. <br>
-
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jgu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jgu OCA], [https://pdbe.org/7jgu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jgu RCSB], [https://www.ebi.ac.uk/pdbsum/7jgu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jgu ProSAT]</span></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=1PE:PENTAETHYLENE+GLYCOL'>1PE</scene></td></tr>
 +
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[7jgt|7jgt]]</div></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">TTE0165 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=273068 CALS4])</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=7jgu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=7jgu OCA], [https://pdbe.org/7jgu PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=7jgu RCSB], [https://www.ebi.ac.uk/pdbsum/7jgu PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=7jgu ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
This study uses differential scanning calorimetry, X-ray crystallography and molecular dynamics simulations to investigate the structural basis for the high thermal stability (melting temperature 97.5 degrees C) of a FN3-like protein domain from thermophilic bacteria Thermoanaerobacter tengcongensis (FN3tt). FN3tt adopts a typical FN3 fold with a three-stranded beta sheet packing against a four-stranded beta sheet. We identified three solvent exposed arginine residues (R23, R25 and R72), which stabilize the protein through salt bridge interactions with glutamic acid residues on adjacent strands. Alanine mutation of the three arginine residues reduced melting temperature by up to 22 degrees C. Crystal structures of the wild type and a thermally destabilized (Tm -19.7 degrees C) triple mutant (R23L/R25T/R72I) were found to be nearly identical, suggesting that the destabilization is due to interactions of the arginine residues. Molecular dynamics simulations showed that the salt bridge interactions in the wild type were stable and provided a dynamical explanation for the cooperativity observed between R23 and R25 based on calorimetry measurements. In addition, folding free energy changes computed using free energy perturbation molecular dynamics simulations showed high correlation with melting temperature changes. This work is another example of surface salt bridges contributing to the enhanced thermal stability of thermophilic proteins. The molecular dynamics simulation methods employed in this study may be broadly useful for in silico surface charge engineering of proteins. This article is protected by copyright. All rights reserved.
 +
 +
Surface Salt bridges Contribute to the Extreme Thermal Stability of an FN3-like domain from a thermophilic bacterium.,Boucher L, Somani S, Negron C, Ma W, Jacobs S, Chan W, Malia T, Obmolova G, Teplyakov A, Gilliland GL, Luo J Proteins. 2021 Aug 18. doi: 10.1002/prot.26218. PMID:34405904<ref>PMID:34405904</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 7jgu" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Cals4]]
[[Category: Large Structures]]
[[Category: Large Structures]]
-
[[Category: Boucher LE]]
+
[[Category: Boucher, L E]]
-
[[Category: Luo J]]
+
[[Category: Luo, J]]
 +
[[Category: Fn3-like domain]]
 +
[[Category: Hyperthermal stability]]
 +
[[Category: Structural protein]]
 +
[[Category: Surface salt bridge]]

Revision as of 07:10, 2 February 2022

Structure of FN3tt mut

PDB ID 7jgu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools