SARS-CoV-2 protein NSP5
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
== Main Protease == | == Main Protease == | ||
<SX viewer='molstar' load='6y2e' size='350' side='right' caption='Main protease from SARS-CoV2 (PDB entry [[6y2e]])' scene=''> | <SX viewer='molstar' load='6y2e' size='350' side='right' caption='Main protease from SARS-CoV2 (PDB entry [[6y2e]])' scene=''> | ||
- | SARS-CoV-2 is a positive-stranded RNA virus with nucleocapsid which belongs to betacoronaviruses. The 30 kb long +ssRNA contains a 5’-cap structure and a 3’-poly-A tail. After membrane fusion, the viral +ssRNA is released into the cytoplasm and translated into two polyproteins pp1a and pp1ab<ref> Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7. </ref> <ref> Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing </ref>. NSP3, a Papain-like protease(s) and ''' | + | SARS-CoV-2 is a positive-stranded RNA virus with nucleocapsid which belongs to betacoronaviruses. The 30 kb long +ssRNA contains a 5’-cap structure and a 3’-poly-A tail. After membrane fusion, the viral +ssRNA is released into the cytoplasm and translated into two polyproteins pp1a and pp1ab<ref> Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7. </ref> <ref> Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing </ref>. NSP3, a Papain-like protease(s) and '''NSP5''', the main protease (also called 3C-like protease [[3CLpro]]) are essential for processing the two polyproteins pp1a and pp1ab. |
The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease<ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref>. While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase<ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>. | The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease<ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref>. While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase<ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>. | ||
Revision as of 18:15, 9 February 2022
Main Protease
|
References
- ↑ Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7.
- ↑ Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing
- ↑ Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78.
- ↑ Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002.
- ↑ Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195.
- ↑ Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966.
- ↑ Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767.
- ↑ Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3.
- ↑ Gorbalenya, A. E., Snijder, E. J. & Ziebuhr, J. (2000). Journal of General Virology. 81, 853–879.
- ↑ Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M. & Rao, Z. (2008). Journal of Virology. 82, 2515–2527.
- ↑ Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Hilgenfeld, R. & Drag, M. (2020). BioRxiv. 2020.03.07.981928.
- ↑ Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Science.
- ↑ Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study.