SARS-CoV-2 protein NSP5

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
== Main Protease ==
== Main Protease ==
<SX viewer='molstar' load='6y2e' size='350' side='right' caption='Main protease from SARS-CoV2 (PDB entry [[6y2e]])' scene=''>
<SX viewer='molstar' load='6y2e' size='350' side='right' caption='Main protease from SARS-CoV2 (PDB entry [[6y2e]])' scene=''>
-
SARS-CoV-2 is a positive-stranded RNA virus with nucleocapsid which belongs to betacoronaviruses. The 30 kb long +ssRNA contains a 5’-cap structure and a 3’-poly-A tail. After membrane fusion, the viral +ssRNA is released into the cytoplasm and translated into two polyproteins pp1a and pp1ab<ref> Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7. </ref> <ref> Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing </ref>. NSP3, a Papain-like protease(s) and '''nsp5''', the main protease (also called 3C-like protease [[3CLpro]]) are essential for processing the two polyproteins pp1a and pp1ab.
+
SARS-CoV-2 is a positive-stranded RNA virus with nucleocapsid which belongs to betacoronaviruses. The 30 kb long +ssRNA contains a 5’-cap structure and a 3’-poly-A tail. After membrane fusion, the viral +ssRNA is released into the cytoplasm and translated into two polyproteins pp1a and pp1ab<ref> Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7. </ref> <ref> Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing </ref>. NSP3, a Papain-like protease(s) and '''NSP5''', the main protease (also called 3C-like protease [[3CLpro]]) are essential for processing the two polyproteins pp1a and pp1ab.
The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease<ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref>. While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase<ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>.
The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease<ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref>. While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase<ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>.

Revision as of 18:15, 9 February 2022

Main Protease

Main protease from SARS-CoV2 (PDB entry 6y2e)

References

  1. Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7.
  2. Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing
  3. Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78.
  4. Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002.
  5. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195.
  6. Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966.
  7. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767.
  8. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3.
  9. Gorbalenya, A. E., Snijder, E. J. & Ziebuhr, J. (2000). Journal of General Virology. 81, 853–879.
  10. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M. & Rao, Z. (2008). Journal of Virology. 82, 2515–2527.
  11. Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Hilgenfeld, R. & Drag, M. (2020). BioRxiv. 2020.03.07.981928.
  12. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Science.
  13. Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study.

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman

Personal tools