SARS-CoV-2 protein NSP5

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 11: Line 11:
== 3CLpro as Potential Drug Target ==
== 3CLpro as Potential Drug Target ==
-
Due to a new outbreak of pulmonary diseases caused by SARS-CoVid-2, the development of new drugs is essential for containment of the viral spread. One promising drug target among coronaviruses is the main protease, as it is essential for processing the polyproteins translated from the viral RNA. Inhibiting this enzyme would block the viral replication and is unlikely to be toxic, as no human proteases with similar cleavage specificity are known. <ref> Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Science. </ref> The potential inhibitor classes can be divided into two classes based on their chemical structures. The first class involves peptide chains that fit the catalytic site of the enzyme by making a covalent link with Cys145, therefore blocking substrate binding. The second class consists of small organic compounds that bind the active site and hence act as competitive inhibitors. Thus, the substrate can not enter the active site cavity. A potential drug which belongs to the second class is Lopinavir, a HIV1 protease inhibitor which seems to be a promising candidate for the treatment of coronavirus infections. <ref> Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study. </ref>
+
Due to a new outbreak of pulmonary diseases caused by SARS-CoVid-2, the development of new drugs is essential for containment of the viral spread. One promising drug target among coronaviruses is the main protease, as it is essential for processing the polyproteins translated from the viral RNA. Inhibiting this enzyme would block the viral replication and is unlikely to be toxic, as no human proteases with similar cleavage specificity are known. <ref>PMID: 32198291</ref><ref>PMID: 32272481</ref>The potential inhibitor classes can be divided into two classes based on their chemical structures. The first class involves peptide chains that fit the catalytic site of the enzyme by making a covalent link with Cys145, therefore blocking substrate binding. The second class consists of small organic compounds that bind the active site and hence act as competitive inhibitors. Thus, the substrate can not enter the active site cavity. A potential drug which belongs to the second class is Lopinavir, a HIV1 protease inhibitor which seems to be a promising candidate for the treatment of coronavirus infections. <ref> Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study. </ref>
</SX>
</SX>

Revision as of 18:20, 9 February 2022

Main Protease

Main protease from SARS-CoV2 (PDB entry 6y2e)

References

  1. Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7.
  2. Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing
  3. Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78.
  4. Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002.
  5. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195.
  6. Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966.
  7. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767.
  8. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3.
  9. Gorbalenya, A. E., Snijder, E. J. & Ziebuhr, J. (2000). Journal of General Virology. 81, 853–879.
  10. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M. & Rao, Z. (2008). Journal of Virology. 82, 2515–2527.
  11. Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Hilgenfeld, R. & Drag, M. (2020). BioRxiv. 2020.03.07.981928.
  12. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291 doi:http://dx.doi.org/10.1126/science.abb3405
  13. Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Zhang B, Li X, Zhang L, Peng C, Duan Y, Yu J, Wang L, Yang K, Liu F, Jiang R, Yang X, You T, Liu X, Yang X, Bai F, Liu H, Liu X, Guddat LW, Xu W, Xiao G, Qin C, Shi Z, Jiang H, Rao Z, Yang H. Structure of M(pro) from COVID-19 virus and discovery of its inhibitors. Nature. 2020 Apr 9. pii: 10.1038/s41586-020-2223-y. doi:, 10.1038/s41586-020-2223-y. PMID:32272481 doi:http://dx.doi.org/10.1038/s41586-020-2223-y
  14. Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study.

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman

Personal tools