Eph/ephrin signaling pathway
From Proteopedia
(Difference between revisions)
(New page: <StructureSection load='' size='350' side='right' scene='45/450911/Cv/1' caption='Human ephrin A3 receptor (magenta) complex with peptide substrate (green), nucleotide derivative and Mg+2 ...) |
|||
Line 1: | Line 1: | ||
<StructureSection load='' size='350' side='right' scene='45/450911/Cv/1' caption='Human ephrin A3 receptor (magenta) complex with peptide substrate (green), nucleotide derivative and Mg+2 ion [[3fxx]]'> | <StructureSection load='' size='350' side='right' scene='45/450911/Cv/1' caption='Human ephrin A3 receptor (magenta) complex with peptide substrate (green), nucleotide derivative and Mg+2 ion [[3fxx]]'> | ||
- | + | RTK class IX [[Ephrin receptor]] family | |
- | + | *<scene name='45/450911/Cv/8'>Ephrin A3 receptor with peptide substrate, nucleotide derivative and Mg+2 ion</scene>. Water molecules are shown as red spheres. | |
+ | *<scene name='45/450911/Cv/9'>Nucleotide derivative and Mg+2 ion binding site</scene>. | ||
+ | *<scene name='45/450911/Cv/10'>Peptide substrate binding site</scene> ([[3fxx]]). | ||
- | == | + | [[Ephrin Type-A Receptor]] |
+ | The <scene name='Ephrin_Type-A_Receptor/Ecto/2'>extracellular part of Eph receptors</scene> includes the N-terminal ephrin (Ligand)-binding domain (LBD), a cysteine-rich domain (CRD), and 2 fibronectin Type-III Repeats (FN3). EphA binds ephrins with <scene name='Ephrin_Type-A_Receptor/Lbd_in/1'>its LBD</scene>. Most ephrins have a similar rigid structure which <scene name='Ephrin_Type-A_Receptor/Ephrin_a2_opening/2'>includes four loops</scene>, AB, CD, FG, & GH. The LBD of EphA4 is said to be a “structural chameleon” able bind both A and B class ephrins. This explains why Ephrin Type-A receptors exhibit cross-class reactivity. The <scene name='Ephrin_Type-A_Receptor/Epha4_opening/1'>overall structure of the EphA4 LBD </scene>includes four important loops, the BC, DE, GH, & JK loops. EphA4 binds the GH loop of the ephrin ligand <scene name='Ephrin_Type-A_Receptor/Epha4_pocket/3'>within a deep pocket</scene> created by the EphA4 DE and JK loops. It is these loops, DE and JK, which undergo the greatest conformational shifts when binding either EphrinA2 or EphrinB2. <scene name='Ephrin_Type-A_Receptor/Epha4_a2_interactions/2'>When binding EphrinA2</scene>, EphA4-Arg 162 forms a hydrogen bond with EphrinA2-Leu 138, while EphA4-Met 164 and EphA4-Leu 166 participate in hydrophobic interactions with EphrinA2-Leu 138 and EphrinA2-PHe 136. Although <scene name='Ephrin_Type-A_Receptor/Ephrinb2_opening/1'>EphA4 binds EphrinB2</scene> in the same binding pocket, the local interactions are significantly different. Most notably, the α-helix present in the EphA4-EphrinA2 JK loop is disrupted in the EphA4-EphrinB2 structure. This is due to <scene name='Ephrin_Type-A_Receptor/Ephrinb2_opening/2'>the steric clash</scene> that would occur between EphrinB2-Trp 122 and EphA4 Met 164. Instead, EphA4-Arg 162 and EphrinB2-Trp 122 form hydrophobic stacking interactions <scene name='Ephrin_Type-A_Receptor/Ephrinb2_stabile/1'>among other interactions </scene> which stabilize the receptor-ligand complex. A morph of the movements EphA4 undergoes to bind EphrinA2 and EphrinB2 can be <scene name='Ephrin_Type-A_Receptor/Morph/4'>seen here</scene>. | ||
- | = | + | Eph-Ephrin complexes form two unique heterotetrameric assemblies consisting of distinct EphA2-EphA2 interfaces. <scene name='Ephrin_Type-A_Receptor/Dimer_out/2'>The 1st tetrameric form</scene> is generated by <scene name='Ephrin_Type-A_Receptor/Dimer_out_int/1'>Eph-Eph interactions only within the LBD</scene>. The 2nd <scene name='Ephrin_Type-A_Receptor/Dimer_in/3'>tetrameric form</scene> involves complex <scene name='Ephrin_Type-A_Receptor/Dimer_in_2/2'>interactions in the LBD</scene> and in the region <scene name='Ephrin_Type-A_Receptor/Dimer_in_3/1'>near the CRD</scene>.<ref>PMID:20505120</ref> These two heterotetramers generate a <scene name='Ephrin_Type-A_Receptor/Clustering/2'>continuous Eph-ephrin assembly when combined</scene> (<scene name='Ephrin_Type-A_Receptor/Clustering2/1'>Alternative Coloring</scene>). The proximity of kinase domains in an eph-ephrin tetramer, favors transphosphorylation of tyrosines in the cytoplasmic domains. Phosphorylation promotes kinase activity by orienting the activation segment of the kinase domain in a way that favors subsrate binding and subsequent signaling. |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
</StructureSection> | </StructureSection> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
|