Sandbox Reserved 1703

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 17: Line 17:
===Inactive State===
===Inactive State===
-
A few hallmarks of the inactive structure of mGlu2 are the Venus FlyTrap Domain in the open conformation, well separated Cysteine-Rich Domains, and distinct orientation of the 7 Transmembrane Domains (7TM). Perhaps the most critical component of the inactive form is the <scene name='90/904307/Tmd_helices/3'>asymmetric TM3-TM4 interface</scene> formed by both of the 7 alpha helices in the alpha and beta chains in the transmembrane domain. The transmembrane domain is mediated mainly by helix IV on the alpha chain and helix lll on the beta chain of the dimer through hydrophobic interactions. These hydrophobic interactions between both transmembrane helices stabilize inactive conformation of mGlu2<ref name="Lin"/>.
+
A few hallmarks of the inactive structure of mGlu2 are the Venus FlyTrap Domain in the open conformation, well separated Cysteine-Rich Domains, and distinct orientation of the 7 Transmembrane Domains (7TM). The most critical component of the inactive form is the <scene name='90/904307/Tmd_helices/3'>asymmetric TM3-TM4 interface</scene> formed by the 7 α-helices in the α and β chains of the 7TM. The inactive structure of mGlu2 is mediated mainly by helices 3 and 4 on both the α and β chains of the dimer through hydrophobic interactions. These hydrophobic interactions between both transmembrane helices stabilize inactive conformation of mGlu2<ref name="Lin"/>. Key hydrophobic interactions are between A630 V699 on the helix
-
[[Image:TM4_hydrophobic_interactions.png|300 px|left|thumb|'''Figure 3.''' Hydrophobic interactions of transmembrane helices III and IV that stabilize the inactive form of mGlu2.]]
+
 
===Intermediate Form===
===Intermediate Form===
-
Although there are no Cryo-EM images of the intermediate form, it is still a very important state that mGlu2 goes through. The <scene name='90/904308/Agonist_binding_site/4'>Agonist Binding Site</scene> is formed by both lobes of the Venus FlyTrap Domain. The receptor will remain in this inactive state if there are insufficient concentrations of glutamate available<ref name="Du" />. Since glutamate is the main excitatory neurotransmitter in the central nervous system, its ability to bind is extremely important, especially for cell excitability.
+
No Cryo-EM structures are currently available of the intermediate form, but it is still an important state for the full activation of mGlu2. The <scene name='90/904308/Agonist_binding_site/4'>Agonist Binding Site</scene> is formed by both lobes of the Venus FlyTrap Domain. The receptor will remain in this inactive state if there are insufficient concentrations of glutamate available<ref name="Du" />. Since glutamate is the main excitatory neurotransmitter in the central nervous system, its binding controls cell excitability.
===PAM and NAM Bound Form===
===PAM and NAM Bound Form===

Revision as of 15:04, 12 April 2022

Metabotropic Glutamate Receptor 2

Fully Active mGlu2 with G-Protein Bound

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, Wu B. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021 Jun;594(7864):583-588. doi: 10.1038/s41586-021-03495-2. Epub 2021, Jun 16. PMID:34135510 doi:http://dx.doi.org/10.1038/s41586-021-03495-2
  2. 2.0 2.1 Seven, Alpay B., et al. “G-Protein Activation by a Metabotropic Glutamate Receptor.” Nature News, Nature Publishing Group, 30 June 2021, https://www.nature.com/articles/s1586-021-03680-3
  3. 3.0 3.1 Du, Juan, et al. “Structures of Human mglu2 and mglu7 Homo- and Heterodimers.” Nature News, Nature Publishing Group, 16 June 2021, https://www.nature.com/articles/s41586-021-03641-w.>
  4. 4.0 4.1 4.2 4.3 Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol. 2016 May 20;7:130. doi: 10.3389/fphar.2016.00130. eCollection, 2016. PMID:27242534 doi:http://dx.doi.org/10.3389/fphar.2016.00130
  5. Ellaithy A, Younkin J, Gonzalez-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015 Aug;38(8):506-16. doi: 10.1016/j.tins.2015.06.002. Epub, 2015 Jul 4. PMID:26148747 doi:http://dx.doi.org/10.1016/j.tins.2015.06.002

Student Contributors

Frannie Brewer and Ashley Wilkinson

Personal tools