|
|
| Line 3: |
Line 3: |
| | <StructureSection load='5t7d' size='340' side='right'caption='[[5t7d]], [[Resolution|resolution]] 1.40Å' scene=''> | | <StructureSection load='5t7d' size='340' side='right'caption='[[5t7d]], [[Resolution|resolution]] 1.40Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[5t7d]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/"actinomyces_hygroscopicus"_jensen_1931 "actinomyces hygroscopicus" jensen 1931]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5T7D OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5T7D FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5t7d]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/"actinomyces_hygroscopicus"_jensen_1931 "actinomyces hygroscopicus" jensen 1931]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5T7D OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5T7D FirstGlance]. <br> |
| - | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACO:ACETYL+COENZYME+*A'>ACO</scene>, <scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5t7e|5t7e]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[5t7e|5t7e]]</div></td></tr> |
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bar ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1912 "Actinomyces hygroscopicus" Jensen 1931])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bar ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1912 "Actinomyces hygroscopicus" Jensen 1931])</td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transferase Transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.183 2.3.1.183] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Transferase Transferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.1.183 2.3.1.183] </span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5t7d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5t7d OCA], [http://pdbe.org/5t7d PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5t7d RCSB], [http://www.ebi.ac.uk/pdbsum/5t7d PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5t7d ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5t7d FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5t7d OCA], [https://pdbe.org/5t7d PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5t7d RCSB], [https://www.ebi.ac.uk/pdbsum/5t7d PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5t7d ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/PAT_STRHY PAT_STRHY]] Inactivates phosphinothricin (PPT) by transfer of an acetyl group from acetyl CoA. Can also acetylate demethylphosphinothricin but not PTT or glutamate. This enzyme is an effector of phosphinothricin tripeptide (PTT or bialaphos) resistance.<ref>PMID:16453790</ref> | + | [[https://www.uniprot.org/uniprot/PAT_STRHY PAT_STRHY]] Inactivates phosphinothricin (PPT) by transfer of an acetyl group from acetyl CoA. Can also acetylate demethylphosphinothricin but not PTT or glutamate. This enzyme is an effector of phosphinothricin tripeptide (PTT or bialaphos) resistance.<ref>PMID:16453790</ref> |
| | <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| | == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
| Structural highlights
Function
[PAT_STRHY] Inactivates phosphinothricin (PPT) by transfer of an acetyl group from acetyl CoA. Can also acetylate demethylphosphinothricin but not PTT or glutamate. This enzyme is an effector of phosphinothricin tripeptide (PTT or bialaphos) resistance.[1]
Publication Abstract from PubMed
Bialaphos resistance (BAR) and phosphinothricin acetyltransferase (PAT) genes, which convey resistance to the broad-spectrum herbicide phosphinothricin (also known as glufosinate) via N-acetylation, have been globally used in basic plant research and genetically engineered crops (1-4) . Although early in vitro enzyme assays showed that recombinant BAR and PAT exhibit substrate preference toward phosphinothricin over the 20 proteinogenic amino acids (1) , indirect effects of BAR-containing transgenes in planta, including modified amino acid levels, have been seen but without the identification of their direct causes (5,6) . Combining metabolomics, plant genetics and biochemical approaches, we show that transgenic BAR indeed converts two plant endogenous amino acids, aminoadipate and tryptophan, to their respective N-acetylated products in several plant species. We report the crystal structures of BAR, and further delineate structural basis for its substrate selectivity and catalytic mechanism. Through structure-guided protein engineering, we generated several BAR variants that display significantly reduced non-specific activities compared with its wild-type counterpart in vivo. The transgenic expression of enzymes can result in unintended off-target metabolism arising from enzyme promiscuity. Understanding such phenomena at the mechanistic level can facilitate the design of maximally insulated systems featuring heterologously expressed enzymes.
Non-specific activities of the major herbicide-resistance gene BAR.,Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hortensteiner S, Weng JK Nat Plants. 2017 Dec;3(12):937-945. doi: 10.1038/s41477-017-0061-1. Epub 2017 Nov, 27. PMID:29180815[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 1987 Sep;6(9):2519-2523. PMID:16453790
- ↑ Christ B, Hochstrasser R, Guyer L, Francisco R, Aubry S, Hortensteiner S, Weng JK. Non-specific activities of the major herbicide-resistance gene BAR. Nat Plants. 2017 Dec;3(12):937-945. doi: 10.1038/s41477-017-0061-1. Epub 2017 Nov, 27. PMID:29180815 doi:http://dx.doi.org/10.1038/s41477-017-0061-1
|