Sandbox Reserved 1703

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 36: Line 36:
====G-protein Binding====
====G-protein Binding====
-
The PAM induced downward shift of helix 6 coupled with the reorientation of the transmembrane domain to a TM6-TM6 asymmetric interface, opens up a cleft on the intracellular surface of the receptor. This cleft allows a <scene name='90/904308/Hook_region/1'>hook-like region</scene>, from terminal 4 residues of the α-subunit of the G-protein to move in adjacent to helix 4 in the TMD. Within this interaction, <scene name='90/904308/Hook_region_recognition/2'>C351</scene> on the hook participates in hydrophobic interactions with ICL2 and helix 4. These interactions allow the C-terminal region of the G-protein α-subunit to bind in the cleft formed by ICL2 and residues on helix 4<ref name="Lin" />.The receptor is now <scene name='90/904307/Main_active_image/4'>fully active</scene> with the dimer coupled only to one G-protein. The VFT is in the closed conformation and the TMD helices are also reoriented in both monomers to form an asymmetric dimer interface. These interactions allow the G-protein to bind which causes mGlu2 to be fully active. Now that mGlu2 is active it can regulate different signaling transductions in the cell<ref name="Lin"/>.
+
The PAM induced downward shift of helix 6 coupled with the reorientation of the transmembrane domain to a TM6-TM6 asymmetric interface, opens up a cleft on the intracellular surface of the receptor. This cleft allows a <scene name='90/904308/Hook_region/2'>hook-like region</scene>, from terminal 4 residues of the α-subunit of the G-protein to move in adjacent to helix 4 in the TMD. Within this interaction, <scene name='90/904308/Hook_region_recognition/2'>C351</scene> on the hook participates in hydrophobic interactions with ICL2 and helix 4. These interactions allow the C-terminal region of the G-protein α-subunit to bind in the cleft formed by ICL2 and residues on helix 4<ref name="Lin" />.The receptor is now <scene name='90/904307/Main_active_image/4'>fully active</scene> with the dimer coupled only to one G-protein. The VFT is in the closed conformation and the TMD helices are also reoriented in both monomers to form an asymmetric dimer interface. These interactions allow the G-protein to bind which causes mGlu2 to be fully active. Now that mGlu2 is active it can regulate different signaling transductions in the cell<ref name="Lin"/>.
==Clinical Relevance==
==Clinical Relevance==

Revision as of 05:03, 19 April 2022

α=Metabotropic Glutamate Receptor 2=

Fully Active mGlu2 with G-Protein Bound (PDB: 7mts)

Drag the structure with the mouse to rotate

3D Structures

7mtq, mGlu2 inactive
7mtr, mGlu2 PAM bound
7mts, mGlu2 active

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 Lin S, Han S, Cai X, Tan Q, Zhou K, Wang D, Wang X, Du J, Yi C, Chu X, Dai A, Zhou Y, Chen Y, Zhou Y, Liu H, Liu J, Yang D, Wang MW, Zhao Q, Wu B. Structures of Gi-bound metabotropic glutamate receptors mGlu2 and mGlu4. Nature. 2021 Jun;594(7864):583-588. doi: 10.1038/s41586-021-03495-2. Epub 2021, Jun 16. PMID:34135510 doi:http://dx.doi.org/10.1038/s41586-021-03495-2
  2. 2.0 2.1 2.2 Seven, Alpay B., et al. “G-Protein Activation by a Metabotropic Glutamate Receptor.” Nature News, Nature Publishing Group, 30 June 2021, https://www.nature.com/articles/s1586-021-03680-3
  3. Du, Juan, et al. “Structures of Human mglu2 and mglu7 Homo- and Heterodimers.” Nature News, Nature Publishing Group, 16 June 2021, https://www.nature.com/articles/s41586-021-03641-w.>
  4. 4.0 4.1 “Metabotropic Glutamate Receptor.” Wikipedia, Wikimedia Foundation, 27 Mar. 2022, https://en.wikipedia.org/wiki/Metabotropic_glutamate_receptor
  5. 5.0 5.1 \“Schizophrenia.” National Institute of Mental Health, U.S. Department of Health and Human Services, https://www.nimh.nih.gov/health/topics/schizophrenia
  6. 6.0 6.1 Ellaithy A, Younkin J, Gonzalez-Maeso J, Logothetis DE. Positive allosteric modulators of metabotropic glutamate 2 receptors in schizophrenia treatment. Trends Neurosci. 2015 Aug;38(8):506-16. doi: 10.1016/j.tins.2015.06.002. Epub, 2015 Jul 4. PMID:26148747 doi:http://dx.doi.org/10.1016/j.tins.2015.06.002
  7. 7.0 7.1 7.2 7.3 Muguruza C, Meana JJ, Callado LF. Group II Metabotropic Glutamate Receptors as Targets for Novel Antipsychotic Drugs. Front Pharmacol. 2016 May 20;7:130. doi: 10.3389/fphar.2016.00130. eCollection, 2016. PMID:27242534 doi:http://dx.doi.org/10.3389/fphar.2016.00130

Student Contributors

Frannie Brewer Ashley Wilkinson

Personal tools