User:Jessica Dempsey/sandbox1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 29: Line 29:
It is apparent through different studies that the delivery method of saporin is essential. Overall, saporin does not penetrate cancer cells that well. As seen previously, saporin can be bound to another molecule to achieve this. Some mechanisms have been thought of for how saporin enters the cell. Some of which are passive mechanisms, although due to cells in the body showing resistance to saporin-S6, the idea of a receptor for saporin <ref name="ncbi" />.
It is apparent through different studies that the delivery method of saporin is essential. Overall, saporin does not penetrate cancer cells that well. As seen previously, saporin can be bound to another molecule to achieve this. Some mechanisms have been thought of for how saporin enters the cell. Some of which are passive mechanisms, although due to cells in the body showing resistance to saporin-S6, the idea of a receptor for saporin <ref name="ncbi" />.
 +
 +
Another study used a lipid-based nanoparticle and loaded saporin into it <ref name="nano" />. These nanoparticles can serve as a sort of delivery system to the target cells. The problem trying to be solved in this particular study was getting around multidrug resistance (MDR), which happens when cancer is resistant to many unrelated drugs. One reason that cancer cells become resistant is due to the ATP-binding cassette (ABC) transporters that are overexpressed in the cancer cells <ref name="nano" />. The use of saporin in the nanoparticle was to inhibit the ABC transporters. Not only did the study find that saporin successfully accomplished this, but it inhibited the growth of tumors in mice <ref name="nano" />.
</StructureSection>
</StructureSection>
== References ==
== References ==
<references/>
<references/>

Revision as of 01:41, 24 April 2022

Your Heading Here (maybe something like 'Structure')

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Bolshakov AP, Stepanichev MY, Dobryakova YV, Spivak YS, Markevich VA. Saporin from Saponaria officinalis as a Tool for Experimental Research, Modeling, and Therapy in Neuroscience. Toxins (Basel). 2020 Aug 25;12(9). pii: toxins12090546. doi:, 10.3390/toxins12090546. PMID:32854372 doi:http://dx.doi.org/10.3390/toxins12090546
  4. 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A. Saporin-S6: a useful tool in cancer therapy. Toxins (Basel). 2013 Oct 7;5(10):1698-722. doi: 10.3390/toxins5101698. PMID:24105401 doi:http://dx.doi.org/10.3390/toxins5101698
  5. 5.0 5.1 5.2 5.3 doi: https://dx.doi.org/10.1016/s0014-5793(00)01325-9
  6. 6.0 6.1 Fabbrini MS, Katayama M, Nakase I, Vago R. Plant Ribosome-Inactivating Proteins: Progesses, Challenges and Biotechnological Applications (and a Few Digressions). Toxins (Basel). 2017 Oct 12;9(10). pii: toxins9100314. doi:, 10.3390/toxins9100314. PMID:29023422 doi:http://dx.doi.org/10.3390/toxins9100314
  7. 7.0 7.1 7.2 7.3 7.4 Zhang GN, Gupta P, Wang M, Barbuti AM, Ashby CR Jr, Zhang YK, Zeng L, Xu Q, Fan YF, Chen ZS. Lipid-Saporin Nanoparticles for the Intracellular Delivery of Cytotoxic Protein to Overcome ABC Transporter-Mediated Multidrug Resistance In Vitro and In Vivo. Cancers (Basel). 2020 Feb 21;12(2). pii: cancers12020498. doi:, 10.3390/cancers12020498. PMID:32098067 doi:http://dx.doi.org/10.3390/cancers12020498
  8. 8.0 8.1 doi: https://dx.doi.org/0.1073/pnas.0911606106
  9. 9.0 9.1 9.2 9.3 Zuppone S, Assalini C, Minici C, Bertagnoli S, Branduardi P, Degano M, Fabbrini MS, Montorsi F, Salonia A, Vago R. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP. Sci Rep. 2020 Feb 13;10(1):2521. doi: 10.1038/s41598-020-59313-8. PMID:32054892 doi:http://dx.doi.org/10.1038/s41598-020-59313-8

Proteopedia Page Contributors and Editors (what is this?)

Jessica Dempsey

Personal tools