|
|
| Line 3: |
Line 3: |
| | <StructureSection load='1qm4' size='340' side='right'caption='[[1qm4]], [[Resolution|resolution]] 2.66Å' scene=''> | | <StructureSection load='1qm4' size='340' side='right'caption='[[1qm4]], [[Resolution|resolution]] 2.66Å' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[1qm4]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QM4 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1QM4 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1qm4]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QM4 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1QM4 FirstGlance]. <br> |
| | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AMB:L-2-AMINO-4-METHOXY-CIS-BUT-3-ENOIC+ACID'>AMB</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=AMB:L-2-AMINO-4-METHOXY-CIS-BUT-3-ENOIC+ACID'>AMB</scene>, <scene name='pdbligand=K:POTASSIUM+ION'>K</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
| - | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1mxa|1mxa]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1mxa|1mxa]]</div></td></tr> |
| - | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Methionine_adenosyltransferase Methionine adenosyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.6 2.5.1.6] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Methionine_adenosyltransferase Methionine adenosyltransferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.6 2.5.1.6] </span></td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1qm4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qm4 OCA], [http://pdbe.org/1qm4 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1qm4 RCSB], [http://www.ebi.ac.uk/pdbsum/1qm4 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1qm4 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1qm4 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qm4 OCA], [https://pdbe.org/1qm4 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1qm4 RCSB], [https://www.ebi.ac.uk/pdbsum/1qm4 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1qm4 ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/METK1_RAT METK1_RAT]] Catalyzes the formation of S-adenosylmethionine from methionine and ATP. | + | [[https://www.uniprot.org/uniprot/METK1_RAT METK1_RAT]] Catalyzes the formation of S-adenosylmethionine from methionine and ATP. |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 32: |
Line 32: |
| | | | |
| | ==See Also== | | ==See Also== |
| - | *[[SAM synthetase|SAM synthetase]] | + | *[[Methionine adenosyltransferase|Methionine adenosyltransferase]] |
| | + | *[[S-adenosylmethionine synthetase 3D structures|S-adenosylmethionine synthetase 3D structures]] |
| | == References == | | == References == |
| | <references/> | | <references/> |
| Structural highlights
Function
[METK1_RAT] Catalyzes the formation of S-adenosylmethionine from methionine and ATP.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Most of the transmethylation reactions use the same methyl donor, S-adenosylmethionine (SAM), that is synthesised from methionine and ATP by methionine adenosyltransferase (MAT). In mammals, two MAT enzymes have been detected, one ubiquitous and another liver specific. The liver enzyme exists in two oligomeric forms, a tetramer (MAT I) and a dimer (MAT III), MAT I being the one that shows a higher level of affinity for methionine but a lower SAM synthesis capacity. We have solved the crystal structure of rat liver MAT I at 2.7 A resolution, complexed with a methionine analogue: l-2-amino-4-methoxy-cis-but-3-enoic acid (l-cisAMB). The enzyme consists of four identical subunits arranged in two tight dimers that are related by crystallographic 2-fold symmetry. The crystal structure shows the positions of the relevant cysteine residues in the chain, and that Cys35 and Cys61 are perfectly oriented for forming a disulphide link. This result leads us to propose a hypothesis to explain the control of MAT I/III exchange and hence, the effects observed on activity. We have identified the methionine-binding site into the active-site cavity, for the first time. The l-cisAMB inhibitor is stacked against Phe251 aromatic ring in a rather planar conformation, and its carboxylate group coordinates a Mg(2+), which, in turn, is linked to Asp180. The essential role of the involved residues in MAT activity has been confirmed by site-directed mutagenesis. Phe251 is exposed to solvent and is located in the beginning of the flexible loop Phe251-Ala260 that is connecting the N-terminal domain to the central domain. We postulate that a conformational change may take place during the enzymatic reaction and this is possibly the reason of the unusual two-step mechanism involving tripolyphosphate hydrolysis. Other important mechanistic implications are discussed on the light of the results. Moreover, the critical role that certain residues identified in this study may have in methionine recognition opens further possibilities for rational drug design.
The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site.,Gonzalez B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J J Mol Biol. 2000 Jul 7;300(2):363-75. PMID:10873471[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Gonzalez B, Pajares MA, Hermoso JA, Alvarez L, Garrido F, Sufrin JR, Sanz-Aparicio J. The crystal structure of tetrameric methionine adenosyltransferase from rat liver reveals the methionine-binding site. J Mol Biol. 2000 Jul 7;300(2):363-75. PMID:10873471 doi:10.1006/jmbi.2000.3858
|