Vibriophage phiVC8 DpoZ

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m
m
Line 12: Line 12:
===Polymerase domain===
===Polymerase domain===
The <scene name='90/909993/Polymerase_active_site/1'>polymerase active site</scene> contains 10 residues essential to catalyzing nucleotide addition to the template strand. The universally conserved
The <scene name='90/909993/Polymerase_active_site/1'>polymerase active site</scene> contains 10 residues essential to catalyzing nucleotide addition to the template strand. The universally conserved
-
<scene name='90/909993/Polymerase_active_site_dyad/1'>catalytic dyad (H581 and D582)</scene> is present and key residue R440, responsible for stabilizing the gamma phosphate of incoming dNTPs, is also conserved. Still, a number of residues in the polymerase domain differ from other PolA polymerases. <scene name='90/909993/Polymerase_dpoz_residues/1'>L455, F459, G548, and S583</scene> are all conserved mutations in the ΦVC8 DpoZ subfamily, though not in the Wayne-like DpoZ subfamily<ref>PMID:34751404</ref>. L455 and G548 do not appear in any known Wayne-like DpoZ subfamily structures, though the F459 residue is present. F459 is normally a tyrosine residue that acts as a steric gate for distinguishing dNTPs from NTPs<ref>Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the <i>Escherichia coli</i> DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>92</i>(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339</ref>, though this function may be conserved as was shown for <i>T. aquaticus</i> DNA polymerase with a Tyr-->Phe mutation in a previous study<ref>Suzuki, M., Baskin, D., Hood, L., & Loeb, L. A. (1996). Random mutagenesis of <i>Thermus aquaticus</i> DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>93</i>(18), 9670–9675. https://doi.org/10.1073/pnas.93.18.9670</ref>. In any case, these individual changes from other polymerases may help account for specificity in Z nucleobase recognition, as it is likely that it is not a single mutation in the enzyme that accounts for the selectivity.
+
<scene name='90/909993/Polymerase_active_site_dyad/1'>catalytic dyad (H581 and D582)</scene> is present and key residue R440, responsible for stabilizing the gamma phosphate of incoming dNTPs, is also conserved. Still, a number of residues in the polymerase domain differ from other PolA polymerases. <scene name='90/909993/Polymerase_dpoz_residues/1'>L455, F459, G548, and S583</scene> are all conserved mutations in the ΦVC8 DpoZ subfamily, though not in the Wayne-like DpoZ subfamily<ref>PMID:34751404</ref>. L455 and G548 do not appear in any known Wayne-like DpoZ subfamily structures, though the F459 residue is present. F459 is normally a tyrosine residue that acts as a steric gate for distinguishing dNTPs from NTPs<ref>Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the <i>Escherichia coli</i> DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>92</i>(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339</ref>, though this function may be conserved as was shown for <i>T. aquaticus</i> DNA polymerase with a Tyr to Phe mutation in a previous study<ref>Suzuki, M., Baskin, D., Hood, L., & Loeb, L. A. (1996). Random mutagenesis of <i>Thermus aquaticus</i> DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>93</i>(18), 9670–9675. https://doi.org/10.1073/pnas.93.18.9670</ref>. In any case, these individual changes from other polymerases may help account for specificity in Z nucleobase recognition, as it is likely that it is not a single mutation in the enzyme that accounts for the selectivity.
===Exonuclease domain===
===Exonuclease domain===

Revision as of 01:51, 3 May 2022

Vibriophage ΦVC8 DNA polymerase DpoZ deposited under the PDB ID 7pbk; thumb-exo open conformation.

Drag the structure with the mouse to rotate

References

  1. Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
  2. Zhou Y, Xu X, Wei Y, Cheng Y, Guo Y, Khudyakov I, Liu F, He P, Song Z, Li Z, Gao Y, Ang EL, Zhao H, Zhang Y, Zhao S. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science. 2021 Apr 30;372(6541):512-516. doi: 10.1126/science.abe4882. PMID:33926954 doi:http://dx.doi.org/10.1126/science.abe4882
  3. Weigele, P., & Raleigh, E. A. (2016). Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chemical Reviews, 116(20), 12655–12687. https://doi.org/10.1021/acs.chemrev.6b00114
  4. Czernecki D, Legrand P, Tekpinar M, Rosario S, Kaminski PA, Delarue M. How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nat Commun. 2021 Apr 23;12(1):2420. doi: 10.1038/s41467-021-22626-x. PMID:33893297 doi:http://dx.doi.org/10.1038/s41467-021-22626-x
  5. Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
  6. Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
  7. Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
  8. Miller, B.R., Beese,L.S., Parish, C.A. and Wu,E.Y. (2015) The closing mechanism of DNA polymerase I at atomic resolution. Structure, 23,1609–1620. https://doi.org/10.1016/j.str.2015.06.016
  9. Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
  10. Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339
  11. Suzuki, M., Baskin, D., Hood, L., & Loeb, L. A. (1996). Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9670–9675. https://doi.org/10.1073/pnas.93.18.9670
  12. Juarez-Quintero, V., Peralta-Castro, A., Benítez Cardoza, C. G., Ellenberger, T. & Brieba, L. G. (2021). Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site. Biochemical Journal, 478, 2665–2679https://doi.org/10.1042/BCJ20200922
  13. Samson, C., Legrand,P., Tekpinar,M., Rozenski,J., Abramov,M., Holliger,P., Pinheiro,V.B., Herdewijn, P. and Delarue,M. (2020) Structural studies of HNA substrate specificity in mutants of an archaeal DNA polymerase obtained by directed evolution. Biomolecules, 10, 1647.

Proteopedia Page Contributors and Editors (what is this?)

Julia Paquette

Personal tools