Vibriophage phiVC8 DpoZ
From Proteopedia
(Difference between revisions)
m |
m |
||
Line 12: | Line 12: | ||
===Polymerase domain=== | ===Polymerase domain=== | ||
The <scene name='90/909993/Polymerase_active_site/1'>polymerase active site</scene> contains 10 residues essential to catalyzing nucleotide addition to the template strand. The universally conserved | The <scene name='90/909993/Polymerase_active_site/1'>polymerase active site</scene> contains 10 residues essential to catalyzing nucleotide addition to the template strand. The universally conserved | ||
- | <scene name='90/909993/Polymerase_active_site_dyad/1'>catalytic dyad (H581 and D582)</scene> is present and key residue R440, responsible for stabilizing the gamma phosphate of incoming dNTPs, is also conserved. Still, a number of residues in the polymerase domain differ from other PolA polymerases. <scene name='90/909993/Polymerase_dpoz_residues/1'>L455, F459, G548, and S583</scene> are all conserved mutations in the ΦVC8 DpoZ subfamily, though not in the Wayne-like DpoZ subfamily<ref>PMID:34751404</ref>. L455 and G548 do not appear in any known Wayne-like DpoZ subfamily structures, though the F459 residue is present. F459 is normally a tyrosine residue that acts as a steric gate for distinguishing dNTPs from NTPs<ref>Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the <i>Escherichia coli</i> DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>92</i>(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339</ref>, though this function may be conserved as was shown for <i>T. aquaticus</i> DNA polymerase with a Tyr | + | <scene name='90/909993/Polymerase_active_site_dyad/1'>catalytic dyad (H581 and D582)</scene> is present and key residue R440, responsible for stabilizing the gamma phosphate of incoming dNTPs, is also conserved. Still, a number of residues in the polymerase domain differ from other PolA polymerases. <scene name='90/909993/Polymerase_dpoz_residues/1'>L455, F459, G548, and S583</scene> are all conserved mutations in the ΦVC8 DpoZ subfamily, though not in the Wayne-like DpoZ subfamily<ref>PMID:34751404</ref>. L455 and G548 do not appear in any known Wayne-like DpoZ subfamily structures, though the F459 residue is present. F459 is normally a tyrosine residue that acts as a steric gate for distinguishing dNTPs from NTPs<ref>Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the <i>Escherichia coli</i> DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>92</i>(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339</ref>, though this function may be conserved as was shown for <i>T. aquaticus</i> DNA polymerase with a Tyr to Phe mutation in a previous study<ref>Suzuki, M., Baskin, D., Hood, L., & Loeb, L. A. (1996). Random mutagenesis of <i>Thermus aquaticus</i> DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>93</i>(18), 9670–9675. https://doi.org/10.1073/pnas.93.18.9670</ref>. In any case, these individual changes from other polymerases may help account for specificity in Z nucleobase recognition, as it is likely that it is not a single mutation in the enzyme that accounts for the selectivity. |
===Exonuclease domain=== | ===Exonuclease domain=== |
Revision as of 01:51, 3 May 2022
|
References
- ↑ Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
- ↑ Zhou Y, Xu X, Wei Y, Cheng Y, Guo Y, Khudyakov I, Liu F, He P, Song Z, Li Z, Gao Y, Ang EL, Zhao H, Zhang Y, Zhao S. A widespread pathway for substitution of adenine by diaminopurine in phage genomes. Science. 2021 Apr 30;372(6541):512-516. doi: 10.1126/science.abe4882. PMID:33926954 doi:http://dx.doi.org/10.1126/science.abe4882
- ↑ Weigele, P., & Raleigh, E. A. (2016). Biosynthesis and Function of Modified Bases in Bacteria and Their Viruses. Chemical Reviews, 116(20), 12655–12687. https://doi.org/10.1021/acs.chemrev.6b00114
- ↑ Czernecki D, Legrand P, Tekpinar M, Rosario S, Kaminski PA, Delarue M. How cyanophage S-2L rejects adenine and incorporates 2-aminoadenine to saturate hydrogen bonding in its DNA. Nat Commun. 2021 Apr 23;12(1):2420. doi: 10.1038/s41467-021-22626-x. PMID:33893297 doi:http://dx.doi.org/10.1038/s41467-021-22626-x
- ↑ Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
- ↑ Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
- ↑ Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
- ↑ Miller, B.R., Beese,L.S., Parish, C.A. and Wu,E.Y. (2015) The closing mechanism of DNA polymerase I at atomic resolution. Structure, 23,1609–1620. https://doi.org/10.1016/j.str.2015.06.016
- ↑ Czernecki D, Hu H, Romoli F, Delarue M. Structural dynamics and determinants of 2-aminoadenine specificity in DNA polymerase DpoZ of vibriophage varphiVC8. Nucleic Acids Res. 2021 Nov 18;49(20):11974-11985. doi: 10.1093/nar/gkab955. PMID:34751404 doi:http://dx.doi.org/10.1093/nar/gkab955
- ↑ Tabor, S., & Richardson, C. C. (1995). A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 92(14), 6339–6343. https://doi.org/10.1073/pnas.92.14.6339
- ↑ Suzuki, M., Baskin, D., Hood, L., & Loeb, L. A. (1996). Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9670–9675. https://doi.org/10.1073/pnas.93.18.9670
- ↑ Juarez-Quintero, V., Peralta-Castro, A., Benítez Cardoza, C. G., Ellenberger, T. & Brieba, L. G. (2021). Structure of an open conformation of T7 DNA polymerase reveals novel structural features regulating primer-template stabilization at the polymerization active site. Biochemical Journal, 478, 2665–2679https://doi.org/10.1042/BCJ20200922
- ↑ Samson, C., Legrand,P., Tekpinar,M., Rozenski,J., Abramov,M., Holliger,P., Pinheiro,V.B., Herdewijn, P. and Delarue,M. (2020) Structural studies of HNA substrate specificity in mutants of an archaeal DNA polymerase obtained by directed evolution. Biomolecules, 10, 1647.