3ja8

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<SX load='3ja8' size='340' side='right' viewer='molstar' caption='[[3ja8]], [[Resolution|resolution]] 3.80&Aring;' scene=''>
<SX load='3ja8' size='340' side='right' viewer='molstar' caption='[[3ja8]], [[Resolution|resolution]] 3.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3ja8]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JA8 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=3JA8 FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3ja8]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Saccharomyces_cerevisiae_s288c Saccharomyces cerevisiae s288c]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3JA8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3JA8 FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ADP:ADENOSINE-5-DIPHOSPHATE'>ADP</scene></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr>
+
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=3ja8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ja8 OCA], [http://pdbe.org/3ja8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3ja8 RCSB], [http://www.ebi.ac.uk/pdbsum/3ja8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3ja8 ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3ja8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3ja8 OCA], [https://pdbe.org/3ja8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3ja8 RCSB], [https://www.ebi.ac.uk/pdbsum/3ja8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3ja8 ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/MCM7_YEAST MCM7_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM5_YEAST MCM5_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM2_YEAST MCM2_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM4_YEAST MCM4_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for S phase execution.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM3_YEAST MCM3_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM6_YEAST MCM6_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for the entry in S phase and for cell division.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref>
+
[[https://www.uniprot.org/uniprot/MCM7_YEAST MCM7_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[https://www.uniprot.org/uniprot/MCM5_YEAST MCM5_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[https://www.uniprot.org/uniprot/MCM2_YEAST MCM2_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[https://www.uniprot.org/uniprot/MCM4_YEAST MCM4_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for S phase execution.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[https://www.uniprot.org/uniprot/MCM3_YEAST MCM3_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[https://www.uniprot.org/uniprot/MCM6_YEAST MCM6_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for the entry in S phase and for cell division.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Revision as of 13:29, 4 May 2022

Cryo-EM structure of the MCM2-7 double hexamer

3ja8, resolution 3.80Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools