3oed

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
==The structure of the complex between complement receptor CR2 and its ligand complement fragment C3d==
==The structure of the complex between complement receptor CR2 and its ligand complement fragment C3d==
-
<StructureSection load='3oed' size='340' side='right' caption='[[3oed]], [[Resolution|resolution]] 3.16&Aring;' scene=''>
+
<StructureSection load='3oed' size='340' side='right'caption='[[3oed]], [[Resolution|resolution]] 3.16&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3oed]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OED OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3OED FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3oed]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3OED OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3OED FirstGlance]. <br>
-
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1c3d|1c3d]], [[1ghq|1ghq]]</td></tr>
+
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1c3d|1c3d]], [[1ghq|1ghq]]</div></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">C3, CPAMD1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), C3DR, CR2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">C3, CPAMD1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), C3DR, CR2 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3oed FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3oed OCA], [http://pdbe.org/3oed PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3oed RCSB], [http://www.ebi.ac.uk/pdbsum/3oed PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3oed ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3oed FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3oed OCA], [https://pdbe.org/3oed PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3oed RCSB], [https://www.ebi.ac.uk/pdbsum/3oed PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3oed ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:[http://omim.org/entry/613779 613779]]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.<ref>PMID:19913840</ref> <ref>PMID:9596584</ref> <ref>PMID:11387479</ref> <ref>PMID:15713468</ref> <ref>PMID:7961791</ref> [:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:[http://omim.org/entry/611378 611378]]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.<ref>PMID:19913840</ref> <ref>PMID:17634448</ref> Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:[http://omim.org/entry/612925 612925]]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.<ref>PMID:19913840</ref> <ref>PMID:18796626</ref> <ref>PMID:20513133</ref> Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.<ref>PMID:19913840</ref> [[http://www.uniprot.org/uniprot/CR2_HUMAN CR2_HUMAN]] Genetic variations in CR2 are associated with susceptibility to systemic lupus erythematosus type 9 (SLEB9) [MIM:[http://omim.org/entry/610927 610927]]. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex genetic basis. SLE is an inflammatory, and often febrile multisystemic disorder of connective tissue characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is thought to represent a failure of the regulatory mechanisms of the autoimmune system.<ref>PMID:17360460</ref> Defects in CR2 are the cause of immunodeficiency, common variable, type 7 (CVID7) [MIM:[http://omim.org/entry/614699 614699]]. A primary immunodeficiency characterized by antibody deficiency, hypogammaglobulinemia, recurrent bacterial infections and an inability to mount an antibody response to antigen. The defect results from a failure of B-cell differentiation and impaired secretion of immunoglobulins; the numbers of circulating B cells is usually in the normal range, but can be low.<ref>PMID:22035880</ref>
+
[[https://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:[https://omim.org/entry/613779 613779]]. A rare defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis.<ref>PMID:19913840</ref> <ref>PMID:9596584</ref> <ref>PMID:11387479</ref> <ref>PMID:15713468</ref> <ref>PMID:7961791</ref> [:] Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type 9 (ARMD9) [MIM:[https://omim.org/entry/611378 611378]]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retinal pigment epithelium and within an elastin-containing structure known as Bruch membrane.<ref>PMID:19913840</ref> <ref>PMID:17634448</ref> Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS5) [MIM:[https://omim.org/entry/612925 612925]]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulatory factors in the complement cascade system. Other genes may play a role in modifying the phenotype.<ref>PMID:19913840</ref> <ref>PMID:18796626</ref> <ref>PMID:20513133</ref> Note=Increased levels of C3 and its cleavage product ASP, are associated with obesity, diabetes and coronary heart disease. Short-term endurance training reduces baseline ASP levels and subsequently fat storage.<ref>PMID:19913840</ref> [[https://www.uniprot.org/uniprot/CR2_HUMAN CR2_HUMAN]] Genetic variations in CR2 are associated with susceptibility to systemic lupus erythematosus type 9 (SLEB9) [MIM:[https://omim.org/entry/610927 610927]]. Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a complex genetic basis. SLE is an inflammatory, and often febrile multisystemic disorder of connective tissue characterized principally by involvement of the skin, joints, kidneys, and serosal membranes. It is thought to represent a failure of the regulatory mechanisms of the autoimmune system.<ref>PMID:17360460</ref> Defects in CR2 are the cause of immunodeficiency, common variable, type 7 (CVID7) [MIM:[https://omim.org/entry/614699 614699]]. A primary immunodeficiency characterized by antibody deficiency, hypogammaglobulinemia, recurrent bacterial infections and an inability to mount an antibody response to antigen. The defect results from a failure of B-cell differentiation and impaired secretion of immunoglobulins; the numbers of circulating B cells is usually in the normal range, but can be low.<ref>PMID:22035880</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> [[http://www.uniprot.org/uniprot/CR2_HUMAN CR2_HUMAN]] Receptor for complement C3Dd, for the Epstein-Barr virus on human B-cells and T-cells and for HNRPU. Participates in B lymphocytes activation.<ref>PMID:7753047</ref>
+
[[https://www.uniprot.org/uniprot/CO3_HUMAN CO3_HUMAN]] C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of local inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> Acylation stimulating protein (ASP): adipogenic hormone that stimulates triglyceride (TG) synthesis and glucose transport in adipocytes, regulating fat storage and playing a role in postprandial TG clearance. Appears to stimulate TG synthesis via activation of the PLC, MAPK and AKT signaling pathways. Ligand for GPR77. Promotes the phosphorylation, ARRB2-mediated internalization and recycling of GPR77.<ref>PMID:8376604</ref> <ref>PMID:2909530</ref> <ref>PMID:9059512</ref> <ref>PMID:9555951</ref> <ref>PMID:10432298</ref> <ref>PMID:15833747</ref> <ref>PMID:16333141</ref> <ref>PMID:19615750</ref> [[https://www.uniprot.org/uniprot/CR2_HUMAN CR2_HUMAN]] Receptor for complement C3Dd, for the Epstein-Barr virus on human B-cells and T-cells and for HNRPU. Participates in B lymphocytes activation.<ref>PMID:7753047</ref>
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 23: Line 23:
==See Also==
==See Also==
-
*[[Complement C3|Complement C3]]
+
*[[Complement C3 3D structures|Complement C3 3D structures]]
== References ==
== References ==
<references/>
<references/>
Line 29: Line 29:
</StructureSection>
</StructureSection>
[[Category: Human]]
[[Category: Human]]
 +
[[Category: Large Structures]]
[[Category: Elsen, J M.H van den]]
[[Category: Elsen, J M.H van den]]
[[Category: Isenman, D E]]
[[Category: Isenman, D E]]

Revision as of 10:41, 18 May 2022

The structure of the complex between complement receptor CR2 and its ligand complement fragment C3d

PDB ID 3oed

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools