|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of an engineered human autonomous VH Domain in complex with VEGF== | | ==Crystal structure of an engineered human autonomous VH Domain in complex with VEGF== |
- | <StructureSection load='3p9w' size='340' side='right' caption='[[3p9w]], [[Resolution|resolution]] 2.41Å' scene=''> | + | <StructureSection load='3p9w' size='340' side='right'caption='[[3p9w]], [[Resolution|resolution]] 2.41Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3p9w]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3P9W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3P9W FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3p9w]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3P9W OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3P9W FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3b9v|3b9v]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3b9v|3b9v]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RP1-261G23.1-009, VEGF, VEGFA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">RP1-261G23.1-009, VEGF, VEGFA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3p9w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3p9w OCA], [http://pdbe.org/3p9w PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3p9w RCSB], [http://www.ebi.ac.uk/pdbsum/3p9w PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3p9w ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3p9w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3p9w OCA], [https://pdbe.org/3p9w PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3p9w RCSB], [https://www.ebi.ac.uk/pdbsum/3p9w PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3p9w ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:[http://omim.org/entry/603933 603933]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. | + | [[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:[https://omim.org/entry/603933 603933]]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.<ref>PMID:11427521</ref> <ref>PMID:15520188</ref> <ref>PMID:16489009</ref> | + | [[https://www.uniprot.org/uniprot/VEGFA_HUMAN VEGFA_HUMAN]] Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.<ref>PMID:11427521</ref> <ref>PMID:15520188</ref> <ref>PMID:16489009</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Vascular Endothelial Growth Factor|Vascular Endothelial Growth Factor]] | + | *[[VEGF 3D Structures|VEGF 3D Structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 29: |
Line 29: |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Ma, X]] | | [[Category: Ma, X]] |
| [[Category: Wiesmann, C]] | | [[Category: Wiesmann, C]] |
| Structural highlights
Disease
[VEGFA_HUMAN] Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:603933]. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis.
Function
[VEGFA_HUMAN] Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.[1] [2] [3]
Publication Abstract from PubMed
We compared the capacity of an autonomous heavy chain variable (VH) domain (VH-B1a) to support diversity within its antigen-binding site relative to the conventional antigen-binding fragment (Fab) from which it was derived. We find that VH-B1a can tolerate significant diversity within all three complementarity-determining regions (CDRs) and also within framework 3, and thus, VH-B1a and the Fab are similar in terms of the regions of the antigen-binding site that can tolerate diversity without compromising stability. We constructed libraries of synthetic VH domains and isolated binders with moderate affinity for vascular endothelial growth factor (VEGF) from a library in which only CDR3 was randomized. One binder was subjected to affinity maturation to derive an autonomous VH domain (VH-V1a) that recognized both human and mouse VEGF with high affinity (KD=16nM or 10nM, respectively). Structural analysis revealed that VH-V1a binds to an epitope that is distinct from the epitopes of a natural VEGF receptor and six different anti-VEGF Fabs. Moreover, VH-V1a recognizes VEGF by using an unusual paratope consisting predominantly of CDR3 but with significant contributions from framework residues within the former light chain interface. These results suggest that VH-B1a and other autonomous VH domains may be useful scaffolds to support both conventional libraries with antigen-binding sites built from the three CDR loops and, also, nonconventional libraries with antigen-binding sites built from CDR3 and the former light chain interface.
Design of Synthetic Autonomous V Domain Libraries and Structural Analysis of a V Domain Bound to Vascular Endothelial Growth Factor.,Ma X, Barthelemy PA, Rouge L, Wiesmann C, Sidhu SS J Mol Biol. 2013 Mar 16. pii: S0022-2836(13)00168-X. doi:, 10.1016/j.jmb.2013.03.020. PMID:23507309[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Murphy JF, Fitzgerald DJ. Vascular endothelial growth factor induces cyclooxygenase-dependent proliferation of endothelial cells via the VEGF-2 receptor. FASEB J. 2001 Jul;15(9):1667-9. PMID:11427521
- ↑ Woolard J, Wang WY, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui TG, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer Res. 2004 Nov 1;64(21):7822-35. PMID:15520188 doi:10.1158/0008-5472.CAN-04-0934
- ↑ Dixelius J, Olsson AK, Thulin A, Lee C, Johansson I, Claesson-Welsh L. Minimal active domain and mechanism of action of the angiogenesis inhibitor histidine-rich glycoprotein. Cancer Res. 2006 Feb 15;66(4):2089-97. PMID:16489009 doi:10.1158/0008-5472.CAN-05-2217
- ↑ Ma X, Barthelemy PA, Rouge L, Wiesmann C, Sidhu SS. Design of Synthetic Autonomous V Domain Libraries and Structural Analysis of a V Domain Bound to Vascular Endothelial Growth Factor. J Mol Biol. 2013 Mar 16. pii: S0022-2836(13)00168-X. doi:, 10.1016/j.jmb.2013.03.020. PMID:23507309 doi:10.1016/j.jmb.2013.03.020
|