|
|
Line 1: |
Line 1: |
| | | |
| ==Candida albicans seryl-tRNA synthetase== | | ==Candida albicans seryl-tRNA synthetase== |
- | <StructureSection load='3qne' size='340' side='right' caption='[[3qne]], [[Resolution|resolution]] 2.00Å' scene=''> | + | <StructureSection load='3qne' size='340' side='right'caption='[[3qne]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3qne]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_11006_[[candida_stellatoidea]] Atcc 11006 [[candida stellatoidea]]]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QNE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3QNE FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3qne]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_11006_[[monilia_stellatoidea]] Atcc 11006 [[monilia stellatoidea]]]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3QNE OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3QNE FirstGlance]. <br> |
- | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CaO19.7901, SES1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5476 ATCC 11006 [[Candida stellatoidea]]])</td></tr> | + | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CaO19.7901, SES1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5476 ATCC 11006 [[Monilia stellatoidea]]])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Serine--tRNA_ligase Serine--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.11 6.1.1.11] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Serine--tRNA_ligase Serine--tRNA ligase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.11 6.1.1.11] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3qne FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qne OCA], [http://pdbe.org/3qne PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3qne RCSB], [http://www.ebi.ac.uk/pdbsum/3qne PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3qne ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3qne FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3qne OCA], [https://pdbe.org/3qne PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3qne RCSB], [https://www.ebi.ac.uk/pdbsum/3qne PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3qne ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SYSC_CANAL SYSC_CANAL]] Catalyzes the attachment of serine to tRNA(Ser). Is also probably able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec). | + | [[https://www.uniprot.org/uniprot/SYSC_CANAL SYSC_CANAL]] Catalyzes the attachment of serine to tRNA(Ser). Is also probably able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec). |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 3qne" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 3qne" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Aminoacyl tRNA synthetase 3D structures|Aminoacyl tRNA synthetase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
| + | [[Category: Large Structures]] |
| [[Category: Serine--tRNA ligase]] | | [[Category: Serine--tRNA ligase]] |
| [[Category: Macedo-Ribeiro, S]] | | [[Category: Macedo-Ribeiro, S]] |
| Structural highlights
Function
[SYSC_CANAL] Catalyzes the attachment of serine to tRNA(Ser). Is also probably able to aminoacylate tRNA(Sec) with serine, to form the misacylated tRNA L-seryl-tRNA(Sec), which will be further converted into selenocysteinyl-tRNA(Sec).
Publication Abstract from PubMed
In a restricted group of opportunistic fungal pathogens the universal leucine CUG codon is translated both as serine (97%) and leucine (3%), challenging the concept that translational ambiguity has a negative impact in living organisms. To elucidate the molecular mechanisms underlying the in vivo tolerance to a nonconserved genetic code alteration, we have undertaken an extensive structural analysis of proteins containing CUG-encoded residues and solved the crystal structures of the two natural isoforms of Candida albicans seryl-tRNA synthetase. We show that codon reassignment resulted in a nonrandom genome-wide CUG redistribution tailored to minimize protein misfolding events induced by the large-scale leucine-to-serine replacement within the CTG clade. Leucine or serine incorporation at the CUG position in C. albicans seryl-tRNA synthetase induces only local structural changes and, although both isoforms display tRNA serylation activity, the leucine-containing isoform is more active. Similarly, codon ambiguity is predicted to shape the function of C. albicans proteins containing CUG-encoded residues in functionally relevant positions, some of which have a key role in signaling cascades associated with morphological changes and pathogenesis. This study provides a first detailed analysis on natural reassignment of codon identity, unveiling a highly dynamic evolutionary pattern of thousands of fungal CUG codons to confer an optimized balance between protein structural robustness and functional plasticity.
Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen.,Rocha R, Pereira PJ, Santos MA, Macedo-Ribeiro S Proc Natl Acad Sci U S A. 2011 Aug 8. PMID:21825144[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rocha R, Pereira PJ, Santos MA, Macedo-Ribeiro S. Unveiling the structural basis for translational ambiguity tolerance in a human fungal pathogen. Proc Natl Acad Sci U S A. 2011 Aug 8. PMID:21825144 doi:10.1073/pnas.1102835108
|