User:Arthur Migliatti/Sandbox1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
<StructureSection load='1trs' size='340' side='right' caption='Human Thioredoxin 1'>
<StructureSection load='1trs' size='340' side='right' caption='Human Thioredoxin 1'>
-
'''Thioredoxin'''(Trx) is a protein present in all organisms, from bacterias to complex beings as humans. This page will be focused on exploring the characteristics of '''Trx1''', a cytosolic form of Trx present in eukaryotes. Trx1 has an active site composed of 2 cysteines separated by 2 aminoacids (<scene name='91/911850/Trx_cys-active_site/2'>Cys32 - X - X - Cys35</scene>) which catalyses the reduction of other thiol-proteins and becomes oxidized. It is reduced back by '''[[Thioredoxin Reductase]]'''(TrxR), which, in the end, is reduced by '''NADPH'''. Together, the two proteins and NADPH form the system Trx<ref>Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.</ref>. One of the most important proteins that Trx reduces is '''[[Peroxiredoxin]]'''(Prx), which catalyses the reduction of Hidrogen Peroxide(H2O2) to water. Since high concentrations of H2O2 produces other potent oxidizing molecules, such as hydroxyl radical, Prx's action, and so Trx's also, are fundamental for the cell to have a redox homeostasis and to have low amount of damage.
+
'''Thioredoxin'''(Trx) is a protein present in all organisms, from bacterias to complex beings as humans. This page will be focused on exploring the characteristics of '''Trx1''', a cytosolic form of Trx present in eukaryotes. Trx1 has an active site composed of 2 cysteines separated by 2 aminoacids (<scene name='91/911850/Trx_cys-active_site/2'>Cys32 - X - X - Cys35</scene>) which catalyses the reduction of other thiol-proteins and becomes oxidized. It is reduced back by '''[[Thioredoxin Reductase]]'''(TrxR), which, in the end, is reduced by '''NADPH'''. Together, the two proteins and NADPH form the system Trx<ref>Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.</ref>. As it is shown in this <scene name='91/911850/Conservation/1'>image</scene>, both Cys32 and Cys 35 were highly conserved during evolution(<font color='mediumvioletred'><b>dark pink</b></font>). One of the most important proteins that Trx reduces is '''[[Peroxiredoxin]]'''(Prx), which catalyses the reduction of Hidrogen Peroxide(H2O2) to water. Since high concentrations of H2O2 produces other potent oxidizing molecules, such as hydroxyl radical, Prx's action, and so Trx's also, are fundamental for the cell to have a redox homeostasis and to have low amount of damage.
Trx1 is a monomeric protein and weights around 12kDa. It is formed by one five-stranded beta sheets involved by 4 alpha helix, shown <scene name='91/911850/Secondary_structure/1'>here</scene>.
Trx1 is a monomeric protein and weights around 12kDa. It is formed by one five-stranded beta sheets involved by 4 alpha helix, shown <scene name='91/911850/Secondary_structure/1'>here</scene>.

Revision as of 23:15, 18 June 2022

Introduction

This is a default text for your page Arthur Migliatti/Sandbox1. Click above on edit this page to modify. Be careful with the < and > signs. You may include any references to papers as in: the use of JSmol in Proteopedia [1] or to the article describing Jmol [2] to the rescue.

Human Thioredoxin 1

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. Lu, J.; Holmgren, A. The Thioredoxin Antioxidant System. Free Radical Biology and Medicine 2014, 66, 75–87. https://doi.org/10.1016/j.freeradbiomed.2013.07.036.
  4. Laurent, T. C.; Moore, E. C.; Reichard, P. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEOTIDES. IV. ISOLATION AND CHARACTERIZATION OF THIOREDOXIN, THE HYDROGEN DONOR FROM ESCHERICHIA COLI B. J Biol Chem 1964, 239, 3436–3444.
  5. Tao, L.; Gao, E.; Bryan, N. S.; Qu, Y.; Liu, H.-R.; Hu, A.; Christopher, T. A.; Lopez, B. L.; Yodoi, J.; Koch, W. J.; Feelisch, M.; Ma, X. L. Cardioprotective Effects of Thioredoxin in Myocardial Ischemia and the Reperfusion Role of S-Nitrosation. Proc Natl Acad Sci U S A 2004, 101 (31), 11471–11476. https://doi.org/10.1073/pnas.0402941101.
  6. Tao, L.; Gao, E.; Bryan, N. S.; Qu, Y.; Liu, H.-R.; Hu, A.; Christopher, T. A.; Lopez, B. L.; Yodoi, J.; Koch, W. J.; Feelisch, M.; Ma, X. L. Cardioprotective Effects of Thioredoxin in Myocardial Ischemia and the Reperfusion Role of S-Nitrosation. Proc Natl Acad Sci U S A 2004, 101 (31), 11471–11476. https://doi.org/10.1073/pnas.0402941101.

Proteopedia Page Contributors and Editors (what is this?)

Arthur Migliatti

Personal tools